J. Mater. Sci. Technol. ›› 2024, Vol. 171: 209-221.DOI: 10.1016/j.jmst.2023.06.033
• Research Article • Previous Articles Next Articles
Zhihui Lia,b,c,1, Hao Zhanga,b,1, Jixin Chena,*, Jiemin Wanga,*, Xiaohui Wanga, Jinxing Yanga,b, Chao Zhanga, Zerong Zhanga,b, Hongyang Liua, Fei Huanga,b, Meishuan Lia, Fei Lic,*
Received:2023-04-06
Revised:2023-04-06
Accepted:2023-04-06
Published:2024-02-01
Online:2023-07-27
Contact:
*E-mail addresses: .jxchen@imr.ac.cn (J. Chen), jieminwang@imr.ac.cn (J. Wang), lifei74@sjtu.edu.cn (F. Li)
About author:1 The authors contributed equally to this work.
Zhihui Li, Hao Zhang, Jixin Chen, Jiemin Wang, Xiaohui Wang, Jinxing Yang, Chao Zhang, Zerong Zhang, Hongyang Liu, Fei Huang, Meishuan Li, Fei Li. Hydrolysis mechanism of YbB2C2 and the microstructure of the carbon derived from the hydrolysis reaction[J]. J. Mater. Sci. Technol., 2024, 171: 209-221.
| [1] Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, J. Am. Chem. Soc. 127 (46) (2005) 16006-16007. [2] H.S. Kim, J.P. Singer, Y. Gogotsi, J.E. Fischer, Micropor. Mesopor. Mater. 120 (3) (2009) 267-271. [3] Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, ACS Nano 4 (3) (2010) 1337-1344. [4] P.L. Nadejda, Nov. Carbon Adsorb. (2012) 269-294. [5] Y.G. Gogotsi, M. Yoshimura, Nature 367 (6464) (1994) 628-630. [6] Y.G. Gogotsi, M. Yoshimura, J. Am. Ceram. Soc. 78 (6) (1995) 1439-1450. [7] Y.G. Gogotsi, M. Yoshimura, J. Mater. Sci. Lett. 14 (10) (1995) 755-759. [8] N.S. Jacobson, Y.G. Gototsi, M. Yoshimura, J. Mater. Chem. 5 (4) (1995) 595-601. [9] T. Kraft, K.G. Nickel, J. Mater. Chem.10 (3)(2000) 671-680. [10] H. Pan, J.B. Zang, L. Dong, X.H. Li, Y.H. Wang, Y.J. Wang, Electrochem. Commun. 37(2013) 40-44. [11] H. Pan, J.B. Zang, X.H. Li, Y.H. Wang, Carbon N.Y. 69(2014) 630-633. [12] H.B. Zhang, C.F. Hu, J.J. Lv, S. Grasso, M. Mishra, M. Estili, Y. Yamauchi, B. Kim, Y. Sakka, Mater. Lett. 130(2014) 188-191. [13] F. Euler, E.R.Czerlinsky, in: In Proceedings of the Conference on Silicon Carbide, Pergamon, Oxford, Boston, United States, 1959. [14] L.M. Foster, G. Long, H.C. Stumpf, Am. Mineral. 43 (3-4) (1958) 285-296. [15] T.Y. Kosolapova, Carbides: Properties, Production, and Applications, Plenum Press, New York, 1971. [16] N. Batisse, K. Guerin, M. Dubois, A. Hamwi, Carbon N.Y. 49 (9) (2011) 2998-3009. [17] Y.S. Chun, D.S. Lim, J. Ceram. Soc. Jpn. 122 (1428) (2014) 577-585. [18] R.K. Dash, A. Nikitin, Y. Gogotsi, Micropor. Mesopor. Mater. 72 (1-3) (2004) 203-208. [19] Y. Gogotsi, S. Welz, D.A. Ersoy, M.J. McNallan, Nature 411 (6835) (2001) 283-287. [20] A. Janes, T. Thomberg, E. Lust, Carbon N.Y. 45 (14) (2007) 2717-2722. [21] I. Tallo, T. Thomberg, H. Kurig, A. Janes, K. Kontturi, E. Lust, J. Solid State Electrochem. 17 (1) (2013) 19-28. [22] N.F. Fedorov, G.K. Ivakhnyuk, V.V. Samonin, J. Appl. Chem. USSR 54 (11) (1981) 2253-2255. [23] D. Osetzky, Carbon N Y 12 (5) (1974) 517-523. [24] V.V. Samonin, G.K. Ivakhnyuk, N.F. Fedorov, J. Appl. Chem. USSR 59 (10) (1986) 2079-2083. [25] L. Zhang, X.J. Qin, G.J. Shao, Z.P. Ma, S. Liu, C.C. He, Mater. Lett. 122(2014) 78-81. [26] J.T. Lee, H. Kim, M. Oschatz, D.C. Lee, F.X. Wu, H.T. Lin, B. Zdyrko, W.I. Cho, S. Kaskel, G. Yushin, Adv. Energy. Mater. 5 (1) (2015) 1400981. [27] J. Torop, V. Palmre, M. Arulepp, T. Sugino, K. Asaka, A. Aabloo, Carbon N.Y. 49 (9) (2011) 3113-3119. [28] R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Carbon N.Y. 44 (12) (2006) 24 89-24 97. [29] A. Burke, J. Power Sources 91 (1)(2000) 37-50. [30] K. Cheng, R. Nargaraj, D. Bijukumar, M.T. Mathew, M. McNallan, Surf. Coat. Technol. 392(2020) 125692. [31] A. Nikitin, Y. Gogotsi, Encycl. Nanosci. Nanotechnol. 7(2004) 553-574. [32] G.R. Zhao, J.X. Chen, Y.M. Li, M.S. Li, Scr. Mater. 124(2016) 86-89. [33] V. Babizhetskyy, J. Bauer, R. Gautier, K. Hiebl, A. Simon, J.-F. Halet, in: J.-C.G. Bünzli, V.K. Pecharsky (Eds.), HPCRE, Elsevier, 2018, pp. 145-269. [34] J. Bauer, O. Bars, Acta Crystallogr. Sect. B-Struct. Sci. 36(1980) 1540-1544. [35] J. Bauer, J.F. Halet, J.Y. Saillard, Coord. Chem. Rev. 178(1998) 723-753. [36] X. Rocquefelte, S.E. Boulfelfel, M. Ben Yahia, J. Bauer, J.Y. Saillard, J.F. Halet, Angew. Chem. Int. Ed. Engl. 44 (46) (2005) 7542-7545. [37] Y. Zhou, H. Xiang, X. Wang, W. Sun, F.-Z. Dai, Z. Feng, J. Mater. Sci. Technol. 33 (9) (2017) 1044-1054. [38] S. Khmelevskyi, P. Mohn, J. Redinger, H. Michor, Supercond. Sci. Technol. 18 (4) (2005) 422-426. [39] M.W. Barsoum, Prog. Solid State Chem. 28 (1)(2000) 201-281. [40] Z. Li, J. Chen, H. Zhang, J. Yang, M. Hu, L. Sun, Z. Zhang, Y. Zhang, M. Li, Sci. Rep. 10 (1) (2020) 20227. [41] X.F. Wang, H.M. Xiang, X. Sun, J.C. Liu, F. Hou, Y.C. Zhou, J. Am. Ceram. Soc. 98 (7) (2015) 2234-2239. [42] J. Zou, G.-J. Zhang, J. Vleugels, O. Van der Biest, J. Eur. Ceram. Soc. 33 (10) (2013) 1609-1614. [43] S. Hillier, Clay Miner. 35 (1)(2000) 291-302. [44] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14 (11) (2002) 2717-2744. [45] D. Vanderbilt, Phys. Rev. B-Condens. Matter 41 (11) (1990) 7892-7895. [46] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18) (1996) 3865-3868. [47] B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131 (1) (1997) 233-240. [48] J.S. Anderson, N.J. Clark, I.J. Mccolm, J. Inorg. Nucl. Chem. 30 (1) (1968) 105-111. [49] P.C. Kempter, Inorg. Chem. 1 (4) (1962) 975 -975. [50] I.J. McColm, J. Alloys Compd. 189 (1) (1992) 31-35. [51] I.J. McColm, T.A. Quigley, J. Less Common Met. 169 (2) (1991) 347-360. [52] I.J. McColm, T.A. Quigley, D.R. Bourne, J. Less Comm. Met. 170 (1) (1991) 191-198. [53] M.M. Li, J.P. Luan, Y. Zhang, F. Jiang, X. Zhou, J. Tang, K. Wang, Ceram. Int. 45 (15) (2019) 18831-18837. [54] D. Singh, R.G. Jadhav, A.K. Das, Energy Technol. 7 (10) (2019) 1-8. [55] J.H. Denning, S.D. Boss, Spectrochim. Acta, Pt. A-Mol. Spectrosc. 28 (9) (1972) 1775-1785. [56] Y. Laureiro, M.L. Veiga, F. Fernández, R. Saez-Puche, A. Jerez, C. Pico, J. Less Common Met. 167 (2) (1991) 387-393. [57] J. Leppä-aho, J. Valkonen, J. Solid State Chem. 99 (2) (1992) 364-375. [58] R.C. Yu, S.C. Li, Y.Q. Wang, X. Kong, J.L. Zhu, F.Y. Li, Z.X. Liu, X.F. Duan, Z. Zhang, C.Q. Jin, Phys. C-Supercond. Appl. 363 (3) (2001) 184-188. [59] M. He, T.Z. Liu, J. Cai, Z.H. Zhang, X.E. Gu, Micron 89 (2016) 16-20. [60] F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (3) (1970) 1126-1130. [61] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Saunders, Philadelphia, 1976. [62] V. Babizhetskyy, Visnyk Lviv Univ. Ser. Chem. 57(2016) 77-83. [63] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A .A . Firsov, Science 306 (5696) (2004) 666-669. [64] J. Shang, J. Xiong, X. Xu, Y. Cai, Mater. Chem. Phys. 217(2018) 5-10. [65] D.F. Li, J.F. Gao, P. Cheng, J. He, Y. Yin, Y.X. Hu, L. Chen, Y. Cheng, J.J. Zhao, Adv. Funct. Mater. 30 (8) (2019) 1-32. [66] W.-L. Li, H.-S. Hu, Y.-F. Zhao, X. Chen, T.-T. Chen, T. Jian, L.-S. Wang, J. Li, Sci. Sin. Chim. 48 (2) (2018) 98-107. [67] K. Suzuki, M. Kato, R. Watanuki, T. Terashima, J. Alloys Compd.317-318(2001) 302-305. [68] N. Greenwood, A.J. Osborn, J. Chem. Soc. 345(1961) 1775-1782. [69] M. Atoji, J. Chem. Phys. 35 (6) (1961) 1950-1960. [70] P. Link, P. Glatzel, K. Kvashnina, R.I. Smith, U. Ruschewitz, Inorg. Chem. 50 (12) (2011) 5587-5595. [71] J. Chi, H. Yu, Chin. J. Catal. 39 (3) (2018) 390-394. [72] S. Shiva Kumar, V. Himabindu, Mater. Sci. Eng. Technol. 2 (3) (2019) 442-454. [73] R. Ludwig, Angew. Chem. Int. Ed. 40 (10) (2010) 1808-1827. [74] T. Kraft, K.G. Nickel, Y.G. Gogotsi, J. Mater. Sci. 33 (17) (1998) 4357-4364 . |
| [1] | Junwen Lai, Jiangxu Li, Peitao Liu, Yan Sun, Xing-Qiu Chen. First-principles study on the electronic structure of Pb10-xCux(PO4)6O (x = 0, 1) [J]. J. Mater. Sci. Technol., 2024, 171(0): 66-70. |
| [2] | Tan Shi, Xi Qiu, Yundi Zhou, Sixin Lyu, Jing Li, Dan Sun, Qing Peng, Yong Xin, Chenyang Lu. Unconventional energetics of small vacancy clusters in BCC high-entropy alloy Nb0.75ZrTiV0.5 [J]. J. Mater. Sci. Technol., 2023, 146(0): 61-71. |
| [3] | Xingpu Zhang, Liangliang Xu, Wenxin Hu, Haofei Zhou, Jiangwei Wang. Effects of Sc on the vacancy and solute behaviours in aluminium [J]. J. Mater. Sci. Technol., 2023, 148(0): 41-51. |
| [4] | J.X. Yan, Z.J. Zhang, P. Zhang, J.H. Liu, H. Yu, Q.M. Hu, J.B. Yang, Z.F. Zhang. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J. Mater. Sci. Technol., 2023, 139(0): 232-244. |
| [5] | Huabing Li, Yu Han, Hao Feng, Gang Zhou, Zhouhua Jiang, Minghui Cai, Yizhuang Li, Mingxin Huang. Enhanced strength-ductility synergy via high dislocation density-induced strain hardening in nitrogen interstitial CrMnFeCoNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 141(0): 184-192. |
| [6] | Yinling Jin, Hongze Fang, Ruirun Chen, Jiwei Wang, Shichen Sun, Shu Wang, Bin Shao, Jingjie Guo. Morphological modification of Mg2Si phase and strengthening mechanism in Mg2Si/Al composites by Eu addition and T6 heat treatment [J]. J. Mater. Sci. Technol., 2023, 159(0): 151-162. |
| [7] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
| [8] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
| [9] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
| [10] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
| [11] | H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding. Solid solution strengthening of high-entropy alloys from first-principles study [J]. J. Mater. Sci. Technol., 2022, 121(0): 105-116. |
| [12] | Bin Liu, Juanli Zhao, Yuchen Liu, Jianqi Xi, Qian Li, Huimin Xiang, Yanchun Zhou. Application of high-throughput first-principles calculations in ceramic innovation [J]. J. Mater. Sci. Technol., 2021, 88(0): 143-157. |
| [13] | Huimin Xiang, Fuzhi Dai, Yanchun Zhou. Secrets of high thermal emission of transition metal disilicides TMSi2 (TM = Ta, Mo) [J]. J. Mater. Sci. Technol., 2021, 89(0): 114-121. |
| [14] | Hailong Yuan, Zhifeng Huang, Jianwen Zhang, Ziqian Yin, Xiangyu Lu, Fei Chen, Qiang Shen. Enhancing thermal stability and photoluminescence of red-emitting Sr2Si5N8:Eu phosphors via boron doping [J]. J. Mater. Sci. Technol., 2021, 94(0): 130-135. |
| [15] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
