J. Mater. Sci. Technol. ›› 2023, Vol. 156: 217-229.DOI: 10.1016/j.jmst.2023.03.007
• Research Article • Previous Articles Next Articles
Yuhua Maa,b,1,*, Xiadiye Aihemaitia,1, Kezhen Qic,**, Shiyin Wanga, Yanjie Shia, Zhuanhu Wanga, Minghe Gaoa, Fuhe Gaia, Yulian Qiua
Received:2023-02-14
Revised:2023-02-28
Accepted:2023-03-05
Published:2023-09-01
Online:2023-03-21
Contact:
* College of Chemistry and Chemical Engineering, Xin-jiang Normal University, Urumqi 830054, China. **E-mail addresses: 15199141253@163.com (Y. Ma), qkzh2003@aliyun.com (K. Qi).
About author:1 These authors contributed equally to this work.
Yuhua Ma, Xiadiye Aihemaiti, Kezhen Qi, Shiyin Wang, Yanjie Shi, Zhuanhu Wang, Minghe Gao, Fuhe Gai, Yulian Qiu. Construction of oxygen-vacancies-rich S-scheme BaTiO3/red phosphorous heterojunction for enhanced photocatalytic activity[J]. J. Mater. Sci. Technol., 2023, 156: 217-229.
| [1] S. Wageh, A. Al-Ghamdi, Q. Xu, Acta Phys.-Chim.Sin. 38(2022) 2202001. [2] E. Zhu, Y. Ma, H. Du, K. Qi, M. Ainiwa, Z. Su, Appl. Surf. Sci. 528(2020) 146932. [3] X. Aihemaiti, X. Wang, Z. Wang, Y. Bai, K. Qi, Y. Ma, K. Tao, M. Simayi, N. Kuerban, J. Environ. Chem.Eng. 9(2021) 106479. [4] L. Yang, D. Fan, Z. Li, Y. Cheng, X. Yang, T. Zhang, Adv. Sustainable Syst. 6(2022) 2100477. [5] I. Krylov, E. Lopat'eva, I. Subbotina, G. Nikishin, B. Yu, A. Terent'ev, Chin. J. Catal. 42(2021) 1700-1711. [6] M. Wang, S. Xu, Z. Zhou, C.L. Dong, X. Guo, J.L. Chen, Y.C. Huang, S. Shen, Y. Chen, L. Guo, C. Burda, Angew. Chem. Int. Ed. 61(2022) e202204711. [7] F. Chen, S. Sun, K. Mu, Y. Li, Z. Shen, S. Zhan, Appl. Catal. B-Environ. 312(2022) 121373. [8] J. Mo, Y. Xu, L. Zhu, W. Wei, J. Zhao, Angew. Chem. Int. Ed. 60(2021) 12524-12531. [9] L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34(2022) e2107668. [10] H. Deng, X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, L. Zhang, Chem. Eng. J. 409(2021) 127377. [11] S. Cao, J. Yu, S. Wageh, A .A . Al-Ghamdi, M. Mousavi, J.B. Ghasemi, F. Xu, J. Mater. Chem. A 10 (2022) 17174-17184. [12] C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33(2021) e2100317. [13] L. Yang, T. Zhang, X. Han, C. Liu, X. Zhou, Adv. Sustainable Syst. 7(2022) 2200402. [14] Y. Zhu, Y. Zhuang, L. Wang, H. Tang, X. Meng, X. She, Chin. J. Catal. 43(2022) 2558-2568. [15] J. Yang, X. Wu, Z. Mei, S. Zhou, Y. Su, G. Wang, Adv. Sustain. Syst. 6 (2022) 220 0 056. [16] Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559. [17] P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Ed. 59(2020) 5218-5225. [18] M. Dai, Z. He, P. Zhang, X. Li, S. Wang, J. Mater. Sci.Technol. 122(2022) 231-242. [19] A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, Appl. Catal. B-Environ. 289(2021) 120039. [20] F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41(2020) 9-20. [21] W. Lu, M. Quilitz, H. Schmidt, J. Eur. Ceram.Soc. 27(2007) 3149-3159. [22] G. Panthi, M. Park, J. Energy Chem. 73(2022) 160-188. [23] S. Lan, X. Zeng, R.A. Rather, I.M.C. Lo, Environ. Sci.: Nano 6 (2019) 554-564. [24] Y. Lei, S. Xu, M. Ding, L. Li, Q. Sun, Z.L. Wang, Adv. Funct. Mater. 30(2020) 2005716. [25] S. Xu, L. Guo, Q. Sun, Z.L. Wang, Adv. Funct. Mater. 29(2019) 1808737. [26] J. Xing, A. Muliana, M. Radovic, Int. J. Heat Mass Transf. 116(2018) 599-608. [27] S. Liu, Q. Xie, L. Zhang, Y. Zhao, X. Wang, P. Mao, J. Wang, X. Lou, J. Eur. Ceram.Soc. 38(2018) 4664-4669. [28] Z. Yan, Y. Guo, G. Zhang, J.M. Liu, Adv. Mater. 23(2011) 1351-1355. [29] T. Xian, H. Yang, L.J. Di, J.F. Dai, J. Alloy. Compd. 622(2015) 1098-1104. [30] R. Li, Q. Li, L. Zong, X. Wang, J. Yang, Electrochim. Acta 91 (2013) 30-35. [31] S. Joshi, R.K.Canjeevaram Balasubramanyam, S.J. Ippolito, Y.M. Sabri, A.E. Kandjani, S.K. Bhargava, M.V. Sunkara, ACS Appl. Energy Mater. 1(2018) 3375-3388. [32] X. Aihemaiti, X. Wang, Y. Li, Y. Wang, L. Xiao, Y. Ma, K. Qi, Y. Zhang, J. Liu, J. Li, Chemosphere 296 (2022) 134013. [33] J. Cheng, Z. Liang, Y. Wu, D. Wang, T. Qiu, Y. Tang, J. Shi, D. Xia, R. Zou, Mater. Chem. Front. 6(2022) 2184-2189. [34] H.Z. Akbas, Z. Aydin, O. Yilmaz, S. Turgut, Ultrason. Sonochem. 34(2017) 873-880. [35] Y. Xuan, H. Quan, Z. Shen, C. Zhang, X. Yang, L.L. Lou, S. Liu, K. Yu, Chem. Eur. J. 26(2020) 2285-2292. [36] X. Liu, X. Shen, B. Sa, Y. Zhang, X. Li, H. Xue, Nano Energy 89 (2021) 106391. [37] R. Li, J. Batur, H. Bian, Y.-.J. Wang, Z.Duan, Y. Xie, J.-.R. Li, ACS Sustain. Chem. Eng. 10(2022) 8658-8668. [38] J. Henych, M. Šť astný, Z.N ˇeme ˇcková, K. Mazanec, J. Tolasz, M. Kormunda, J. Ederer, P. Janoš, Chem. Eng. J. 414(2021) 128822. [39] Y. Liu, F. Yu, F. Wang, S. Bai, G. He, Chin. J. Struct. Chem. 41(2022) 2201034-2201039. [40] J. Li, X. Wu, S. Liu, Acta Phys.-Chim.Sin. 37(2021) 2009038. [41] Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys.-Chim.Sin. 37(2021) 2009097. [42] C.M. Magdalane, K. Kaviyarasu, G.M.A.Priyadharsini, A.K.H.Bashir, N. Mayedwa, N. Matinise, A.B. Isaev, N.Abdullah Al-Dhabi, M.V. Arasu, S. Arokiyaraj, J. Kennedy, M. Maaza, J. Mater. Res. Technol. 8(2019) 2898-2909. [43] X. Yan, B. Wang, M. Ji, Q. Jiang, G. Liu, P. Liu, S. Yin, H. Li, J. Xia, Chin. J. Struct. Chem. 41(2022) 2208044-2208051. [44] X. Li, C. Chen, L. Hao, F. Wang, Y. Liu, G. Yi, Chinese J. Struct. Chem. 41(2022) 2203077-2203084. [45] Y. Liu, D. Pan, M. Xiong, Y. Tao, X. Chen, D. Zhang, Y. Huang, G. Li, Chin. J. Catal. 41(2020) 1554-1563. [46] P. Yan, J. Dong, Z. Mo, L. Xu, J. Qian, J. Xia, J. Zhang, H. Li, Biosens. Bioelectron. 148(2020) 111802. [47] H. Li, B. Sun, T. Gao, H. Li, Y. Ren, G. Zhou, Chin. J. Catal. 43(2022) 461-471. [48] J. Wang, D. Zhang, J. Deng, S. Chen, J. Colloid Interface Sci. 516(2018) 215-223. [49] W. Li, J. Yue, F. Hua, C. Feng, Y. Bu, Z. Chen, Mater. Res. Bull. 70(2015) 13-19. [50] J. Li, C. Tian, H. Zhao, J. Mei, J. Zhang, S. Yang, J. Alloy. Compd. 810(2019) 151885. [51] T. Muhmood, M. Xia, W. Lei, F. Wang, Appl. Catal. B-Environ. 238(2018) 568-575. [52] J. Wang, M. Pi, D. Zhang, S. Chen, J. Phys.D-Appl. Phys. 53(2020) 085501. [53] L. Chen, Y. Jia, J. Zhao, J. Ma, Z. Wu, G. Yuan, X. Cui, J. Colloid Interface Sci. 586(2021) 758-765. [54] Z. He, C. Sun, S. Yang, Y. Ding, H. He, Z. Wang, J. Hazard. Mater. 162(2009) 1477-1486. [55] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Chem. Eng. J. 169(2011) 126-134. [56] W. Tang, J. Chen, Z. Yin, W. Sheng, F. Lin, H. Xu, S. Cao, Chin. J. Catal. 42(2021) 347-355. [57] R.G. Nair, J.K. Roy, S.K. Samdarshi, A.K. Mukherjee, Colloids Surf. B-Biointerfaces 86 (2011) 7-13. [58] J. Chen, Y. Zhu, X. Yang, W. Ye, J. Liu, D.S. Butenko, P. Lu, P. Meng, Y. Xu, D. Yang, S. Zhang, A.C.S.Appl, Nano Mater. 5(2022) 862-870. [59] Y.-.F. Zhu, L. Xu, J. Hu, J. Zhang, R.-.G. Du, C.-.J. Lin, Electrochim. Acta 121 (2014) 361-368. [60] G. Zheng, J. Wang, H. Li, Y. Li, P. Hu, Appl. Catal. B-Environ. 265(2020) 118561. [61] X. Jia, Q. Han, H. Liu, S. Li, H. Bi, Chem. Eng. J. 399(2020) 125701. [62] J. Gu, Y. Yu, X. Fu, H. Chen, F. Jiang, X. Wang, Appl. Surf. Sci. 555(2021) 149733. [63] S. Cheng, Q. Xiong, C. Zhao, X. Yang, Chin. J. Struct. Chem. 41(2022) 2208058-2208064. [64] J. Li, B. Huang, Q. Guo, S. Guo, Z. Peng, J. Liu, Q. Tian, Y. Yang, Q. Xu, Z. Liu, B. Liu, Appl. Catal. B-Environ. 284(2021) 119733. [65] Q. Wang, G. Wang, J. Wang, J. Li, K. Wang, S. Zhou, Y. Su, Adv. Sustain. Syst. 7 (2022) 220 0 027. [66] J. Bai, R. Shen, Z. Jiang, P. Zhang, Y. Li, X. Li, Chin. J. Catal. 43(2022) 359-369. [67] S. Li, M. Cai, Y. Liu, J. Zhang, C. Wang, S. Zang, Y. Li, P. Zhang, X. Li, Inorg. Chem. Front. 9(2022) 2479-2497. [68] D. Xia, W. Wang, R. Yin, Z. Jiang, T. An, G. Li, H. Zhao, P.K. Wong, Appl. Catal. B-Environ. 214(2017) 23-33. [69] L. Mao, H. Liu, L. Yao, W. Wen, M.-.M. Chen, X.Zhang, S. Wang, Chem. Eng. J. 429(2022) 132297. [70] X. Ren, D. Philo, Y. Li, L. Shi, K. Chang, J. Ye, Coord. Chem. Rev. 424(2020) 213516 . |
| [1] | Jiahui Hua, Zhongliao Wang, Jinfeng Zhang, Kai Dai, Chunfeng Shao, Ke Fan. A hierarchical Bi-MOF-derived BiOBr/Mn0.2Cd0.8S S-scheme for visible-light-driven photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2023, 156(0): 64-71. |
| [2] | Chao Liu, Qinfang Zhang, Zhigang Zou. Recent advances in designing ZnIn2S4-based heterostructured photocatalysts for hydrogen evolution [J]. J. Mater. Sci. Technol., 2023, 139(0): 167-188. |
| [3] | Tian Wang, Zhiliang Jin. Graphdiyne (CnH2n-2) based CuI-GDY/ZnAl LDH double S-scheme heterojunction proved with in situ XPS for efficient photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2023, 155(0): 132-141. |
| [4] | Xiaojie Mo, Xiaohan Zhang, Biyun Lin, Chuangyu Ning, Ming Li, Hua Liao, Zhihong Chen, Xin Wang. Boosting interfacial S-scheme charge transfer and photocatalytic H2-production activity of 1D/2D WO3/g-C3N4 heterojunction by molecular benzene-rings integration [J]. J. Mater. Sci. Technol., 2023, 145(0): 174-184. |
| [5] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
| [6] | Quanlong Xu, S. Wageh, Ahmed A. Al-Ghamdi, Xin Li. Design principle of S-scheme heterojunction photocatalyst [J]. J. Mater. Sci. Technol., 2022, 124(0): 171-173. |
| [7] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
| [8] | Meng Dai, Zuoli He, Peng Zhang, Xin Li, Shuguang Wang. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 122(0): 231-242. |
| [9] | Kaiqiang Xu, Jie Shen, Shiying Zhang, Difa Xu, Xiaohua Chen. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin [J]. J. Mater. Sci. Technol., 2022, 121(0): 236-244. |
| [10] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
| [11] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
| [12] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
| [13] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
| [14] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
| [15] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
