J. Mater. Sci. Technol. ›› 2022, Vol. 122: 33-43.DOI: 10.1016/j.jmst.2021.11.078
• Research Article • Previous Articles Next Articles
Yue Wua, Yang Tanga, Ya Zhanga, Yanan Fub, Hui Xinga,*(), Jiao Zhanga,c,d,*(
), Jun Jiange, Baode Suna,c,d
Received:
2021-09-11
Revised:
2021-10-27
Accepted:
2021-11-13
Published:
2022-09-20
Online:
2022-03-19
Contact:
Hui Xing,Jiao Zhang
About author:
zj119@sjtu.edu.cn (J. Zhang).Yue Wu, Yang Tang, Ya Zhang, Yanan Fu, Hui Xing, Jiao Zhang, Jun Jiang, Baode Sun. In situ radiographic study of the grain refining behavior of Al3Sc during the solidification of Al-10Cu alloy[J]. J. Mater. Sci. Technol., 2022, 122: 33-43.
Fig. 3. The ex situ characterizations of the Al3Sc: (a) XRD patterns of the three alloys after in situ solidifications; (b) The morphology of Al3Sc particles; (c) The enlarged view of the area denoted by the black frame in (b); (d-f) The EDS mapping of (c).
Zone | Al (at.%) | Sc (at.%) | Cu (at.%) |
---|---|---|---|
Z1 | 74.72 | 25.01 | 0.27 |
Z2 | 74.65 | 25.31 | 0.04 |
Z3 | 74.65 | 25.31 | 0.04 |
Table 1. The elemental compositions of the zones marked in Fig. 3(c).
Zone | Al (at.%) | Sc (at.%) | Cu (at.%) |
---|---|---|---|
Z1 | 74.72 | 25.01 | 0.27 |
Z2 | 74.65 | 25.31 | 0.04 |
Z3 | 74.65 | 25.31 | 0.04 |
Fig. 4. Analysis in 0.6Sc×10: (a) Radiograph sequence of the microstructural evolution of Al3Sc particles and α-Al grains. The start frames t0 and t1 correspond to the emergence of the first Al3Sc particle A and α-Al grain A in the FOV, respectively. (b) The settling velocities of Al3Sc particles 1 and 2. (c) Trajectories of grains 3, 4, and 5 during t1 = 5-19 s.
Fig. 5. Analysis of the region labeled with a white frame in Fig. 4: (a) Trajectories of three particles/grains. Three large points in each trajectory correspond to the moments of inserted radiographs. The inserted radiographs provide zoomed-in views of the region labeled with a white frame in Fig. 4. Time-evolved (b) horizontal velocities and (c) vertical velocities of three particles/grains. The “t1 = -t s” means t s before the emergence of grains in FOV.
Fig. 6. Morphologies of Al3Sc particles in (a) 0.6Sc and (b) 1.0Sc. Morphologies of grains in (c) 0.6Sc and (d) 1.0Sc. The inset images provide the zoomed-in views. Size distributions of Al3Sc particles in (e) 0.6Sc×10 and (f) 1.0Sc. Time-evolved (g) sizes and (h) growth velocities of Al3Sc particles in 0.6Sc×10 and 1.0Sc.
Fig. 7. Radiograph sequences of the microstructural evolution of α-Al grains in (a) 0.2Sc, (b) 0.6Sc, and (c) 1.0Sc, respectively. t1 = 0 s is set when the first grain emerged in FOV. The yellow ellipses denote the trails caused by the fast movement of grains. The green dashed curves with arrows denote the CMG.
Fig. 9. The morphologies of (a) 0.2Sc, (b) 0.6Sc, and (c) 1.0Sc at t1 = 66 s, respectively. The colormap is a pseudo colorized image according to grayscale to enhance grain visibility. The blue patches denote the grains. (d) The final grain numbers in FOV and mean grain sizes of the three experiments.
[1] |
M. Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Mater. Des. 66 (2015) 150-161 1980-2015.
DOI URL |
[2] |
M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, H. Wang, Mater. Sci. Eng. A 590 (2014) 246-254.
DOI URL |
[3] | K. Zhao, T. Gao, H. Yang, K. Hu, G. Liu, Q. Sun, J. Nie, X. Liu, Mater. Sci. Eng. A 806 (2021) 140852. |
[4] | A .L. Greer, P.V. Evans, D.J. Bristow, Acta Mater. 48 (2000) 2823-2835. |
[5] | J. Li, F.S. Hage, Q.M. Ramasse, P. Schumacher, Acta Mater. 206 (2021) 116652. |
[6] | D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59 (2011) 4907-4921. |
[7] |
M. Easton, D. StJohn, Metall. Mater. Trans. A 30 (1999) 1613-1623.
DOI URL |
[8] |
M. Easton, D. StJohn, Metall. Mater. Trans. A 30 (1999) 1625-1633.
DOI URL |
[9] |
A.F. Norman, P.B. Prangnell, R.S. McEwen, Acta Mater. 46 (1998) 5715-5732.
DOI URL |
[10] |
J. Røyset, N. Ryum, Int. Mater. Rev. 50 (2005) 19-44.
DOI URL |
[11] |
F. Czerwinski, J. Mater. Sci. 55 (2020) 24-72.
DOI URL |
[12] | K.Y. Wang, J. Xiang, R.D. Zhao, J.L. Bi, X.F. Wu, M.H. Chen, F.F. Wu, J. Eckert, J. Alloy. Compd. 860 (2021) 158421. |
[13] | H. Jiang, S. Li, L. Zhang, J. He, Q. Zheng, Y. Song, Y. Li, J. Zhao, J. Alloy. Compd. 859 (2021) 157804. |
[14] |
X. Hu, F. Jiang, F. Ai, H. Yan, J. Alloy. Compd. 538 (2012) 21-27.
DOI URL |
[15] |
E.A. Marquis, D.N. Seidman, Acta Mater. 53 (2005) 4259-4268.
DOI URL |
[16] | Y. Sun, Y. Luo, Q. Pan, B. Liu, L. Long, W. Wang, J. Ye, Z. Huang, S. Xiang, Mater. Today Commun. 26 (2021) 101899. |
[17] |
A. Jiang, X. Wang, Acta Mater. 200 (2020) 56-65.
DOI URL |
[18] |
X. Zhang, L. Zhang, G. Wu, J. Sun, M. Rong, C.C. Hsieh, Y. Yu, Mater. Charact. 142 (2018) 223-236.
DOI URL |
[19] |
J. Zhang, G. Wu, L. Zhang, X. Zhang, C. Shi, X. Tong, J. Mater. Sci. Technol. 96 (2022) 212-225.
DOI URL |
[20] |
C. Yang, P. Zhang, D. Shao, R.H. Wang, L.F. Cao, J.Y. Zhang, G. Liu, B.A. Chen, J. Sun, Acta Mater. 119 (2016) 68-79.
DOI URL |
[21] |
B.A. Chen, L. Pan, R.H. Wang, G. Liu, P.M. Cheng, L. Xiao, J. Sun, Mater. Sci. Eng. A 530 (2011) 607-617.
DOI URL |
[22] | A.M. Samuel S.A. Alkahtani H.W. Doty, F.H. Samuel, Mater. Des. 88 (2015) 1134-1144. |
[23] |
G. Li, N. Zhao, T. Liu, J. Li, C. He, C. Shi, E. Liu, J. Sha, Mater. Sci. Eng. A 617 (2014) 219-227.
DOI URL |
[24] |
Y. Deng, Z. Yin, K. Zhao, J. Duan, Z. He, J. Alloy. Compd. 530 (2012) 71-80.
DOI URL |
[25] | L. Arnberg, R.H. Mathiesen, JOM 59 (2007) 20-26. |
[26] |
P.D. Lee, J.D. Hunt, Acta Mater. 45 (1997) 4155-4169.
DOI URL |
[27] |
R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, A. Snigirev, Phys. Rev. Lett. 83 (1999) 5062-5065.
DOI URL |
[28] | S. Boden, S. Eckert, B. Willers, G. Gerbeth, Metall. Mater. Trans. A 39 (2008) 613-623. |
[29] |
W.U. Mirihanage, K.V. Falch, I. Snigireva, A. Snigirev, Y.J. Li, L. Arnberg, R.H. Mathiesen, Acta Mater. 81 (2014) 241-247.
DOI URL |
[30] |
T. Nelson, B. Cai, N. Warnken, P.D. Lee, E. Boller, O.V. Magdysyuk, N.R. Green, Scr. Mater. 180 (2020) 29-33.
DOI URL |
[31] |
S. Feng, Y. Cui, E. Liotti, A. Lui, C.M. Gourlay, P.S. Grant, Scr. Mater. 184 (2020) 57-62.
DOI URL |
[32] |
Y. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg, Y. Li, Acta Mater. 140 (2017) 224-239.
DOI URL |
[33] |
Y. Xu, D. Casari, R.H. Mathiesen, Y. Li, Acta Mater. 149 (2018) 312-325.
DOI URL |
[34] | E. Liotti, C. Arteta, A. Zisserman, A. Lui, V. Lempitsky, P.S. Grant, Sci. Adv. 4 (4)(2018) 4. |
[35] | H. Soltani, F. Ngomesse, G. Reinhart, M.C. Benoudia, M. Zahzouh, H. Nguyen-Thi, J. Alloy. Compd. 862 (2020) |
[36] |
A.G. Murphy, W.U. Mirihanage, D.J. Browne, R.H. Mathiesen, Acta Mater. 95 (2015) 83-89.
DOI URL |
[37] |
K. Nogita, H. Yasuda, A. Prasad, S.D. McDonald, T. Nagira, N. Nakatsuka, K. Ue- sugi, D.H. StJohn, Mater. Charact. 85 (2013) 134-140.
DOI URL |
[38] |
Y. Jia, D. Wang, Y. Fu, A. Dong, G. Zhu, D. Shu, B. Sun, Metall. Mater. Trans. A 50 (2019) 1795-1804.
DOI URL |
[39] | Y. Zhao, W. Zhang, B. Koe, W. Du, M. Wang, W. Wang, E. Boller, A. Rack, Z. Sun, D. Shu, B. Sun, J. Mi, Mater. Charact. 164 (2020) 11035. |
[40] | H. Soltani, F. Ngomesse, G. Reinhart, M.C. Benoudia, M. Zahzouh, H. Nguyen-Thi, J. Alloy. Compd. 862 (2021) 158028. |
[41] |
A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, J. Baruchel, Acta Mater. 61 (2013) 1303-1315.
DOI URL |
[42] | H. Nguyen-Thi, A. Bogno, G. Reinhart, B. Billia, R.H. Mathiesen, G. Zimmer- mann, Y. Houltz, K. Löth, D. Voss, A. Verga, F. de Pascale, J. Phys. Conf. Ser. 327 (2011) 012012. |
[43] |
S. Ganesan, D.R. Poirier, Metall. Trans. Phys. Metall. Mater. Sci. 18 (1987) 721-723 A.
DOI URL |
[44] |
D. Shu, B. Sun, J. Mi, P.S. Grant, Acta Mater. 59 (2011) 2135-2144.
DOI URL |
[45] |
A. Prasad, L. Yuan, P.D. Lee, D.H. StJohn, Acta Mater. 61 (2013) 5914-5927.
DOI URL |
[46] |
Y. Jia, H. Huang, Y. Fu, G. Zhu, D. Shu, B. Sun, D.H. StJohn, Scr. Mater. 167 (2019) 6-10.
DOI URL |
[47] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[48] | Y. Tang, Y. Wu, Y. Zhang, Y. Dai, Q. Dong, Y. Han, G. Zhu, J. Zhang, Y. Fu, B. Sun, Acta Mater. 212 (2021) 116861. |
[49] |
T.E. Quested, A.L. Greer, Acta Mater. 53 (2005) 4643-4653.
DOI URL |
[50] |
H. Men, Z. Fan, Acta Mater. 59 (2011) 2704-2712.
DOI URL |
[1] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[2] | Yixuan He, Fan Bu, Yuhao Wu, Jianbao Zhang, Dawei Luo, Zhangchi Bian, Qing Zhou, Tie Liu, Qiang Wang, Jun Wang, Haifeng Wang, Jinshan Li, Eric Beaugnon. Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field [J]. J. Mater. Sci. Technol., 2022, 116(0): 58-71. |
[3] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
[4] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[5] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[6] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[7] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[8] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[9] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[10] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[11] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
[12] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[13] | Zhenzhuang Li, Zongbin Li, Yunzhuo Lu, Xing Lu, Liang Zuo. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 167-173. |
[14] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[15] | P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang. Rapid Growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition [J]. J. Mater. Sci. Technol., 2021, 77(0): 82-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||