J. Mater. Sci. Technol. ›› 2022, Vol. 105: 286-292.DOI: 10.1016/j.jmst.2021.07.035
• Research Article • Previous Articles
Minmin Zhua,b,*(
), Haizhong Zhanga, Shoo Wen Long Favierc, Yida Zhaoc, Huilu Guoc, Zehui Duc,*(
)
Received:2021-05-11
Revised:2021-07-13
Accepted:2021-07-14
Published:2021-09-23
Online:2021-09-23
Contact:
Minmin Zhu,Zehui Du
About author:duzehui@ntu.edu.sg (Z. Du).Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis[J]. J. Mater. Sci. Technol., 2022, 105: 286-292.
Fig. 1. Structural characterizations of the morpho butterfly. (a) Original and (b) amplified photo images of the morpho butterfly. (c) Photograph of cover scale and ground scale in wing. SEM images of butterfly wing (d), cover-ground scale interfaces (e), and zoomed-in SEM image of (f) the ground scales and (g) the cover scales.
Fig. 2. Controlled replication of morpho butterfly by a sputtering technique. (a) Schematic illustration of the replication process by the sputtering, tape-assisted transferring, and annealing processes. (b-d) Photographs of TiO2 replica without tape assisted transfer process. (e-g) Photographs of TiO2 replica with tape assisted transfer process. FESEM images of (h) the ground scale replica and (i) the cover scale replicas made of TiO2 and obtained from the transferring and annealing process.
Fig. 3. SEM characterizations of TiO2 replicas. SEM images of (a) the cover scales and (b) the ground scales of TiO2 replicas with 5, 10, 20, and 60 min deposition time. The scale bar is 1 μm.
Fig. 4. Microstructure characterization and phase identifications of TiO2. (a) Schematic illustration of anatase and rutile TiO2. (b) XRD patterns of the TiO2 replica sputtered for 20 min and annealed at different temperatures. (c-e) TEM images of TiO2 replica annealed at 450, 550, and 650°C. The corresponding SAED patterns are shown in the insets. (f-h) HRTEM images of the replicas annealed at 450, 550, and 650°C.
Fig. 5. Photocatalytic activity of the TiO2 replicas. (a) Photo images of MB (i) before solar illumination, (ii) after 3 h of solar illumination. (b) Degradation ratio of MB of all samples as a function of the time. (c) Comparison of the degradation rate of MB in the TiO2 replicas with TiO2 thin films with the same area. (d) Schematic illustration of the photocatalytic decomposition process. High resolution (e) Ti 2p and (f) O 1s XPS spectra of the sample with 20-min sputtering time.
Fig. 6. Enhancement mechanism of visible light photocatalytic activity in the devices. (a) Hierarchical metamaterial structure of TiO2. (b) Absorbance spectra of TiO2 replicas in UV-visible range with increasing growth time.
| [1] |
Q. Shen, Z. Luo, S. Ma, P. Tao, C. Song, J. Wu, W. Shang, T. Deng, Adv. Mater. 30 (2018) 1707632.
DOI URL |
| [2] |
H. Zhou, J. Xu, X. Liu, H. Zhang, D. Wang, Z. Chen, D. Zhang, T. Fan, Adv. Funct. Mater. 28 (2018) 1705309.
DOI URL |
| [3] |
R.A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J.R. Cournoyer, E. Olson, Nat Photonics 1 (2007) 123-128.
DOI URL |
| [4] |
Q. Shen, S. Ma, Z. Luo, S. An, J. He, R. Zhang, P. Tao, C. Song, J. Wu, R.A. Potyrailo, T. Deng, W. Shang, Adv. Opt. Mater. 8 (2020) 1901647.
DOI URL |
| [5] |
J. Huang, X. Wang, Z.L. Wang, Nano Lett. 6 (2006) 2325-2331.
DOI URL |
| [6] |
J. He, N.S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, W. Shang, RSC Adv. 8 (2018) 32395-32400.
DOI URL |
| [7] |
C.P. Barrera-Patiño, J.D. Vollet-Filho, R.G. Teixeira-Rosa, H.P. Quiroz, A. Dussan, N.M. Inada, V.S. Bagnato, R.R. Rey-González, Sci. Rep. 10 (2020) 1-11.
DOI URL |
| [8] |
S. Zhu, D. Zhang, Z. Chen, J. Gu, W. Li, H. Jiang, G. Zhou, Nanotechnology 20 (2009) 315303.
DOI URL |
| [9] |
S. Zhu, X. Liu, Z. Chen, C. Liu, C. Feng, J. Gu, Q. Liu, D. Zhang, J. Mater. Chem. 20 (2010) 9126-9132.
DOI URL |
| [10] |
B. O’Regan, M. Grätzel, Nature 353 (1991) 737-740.
DOI URL |
| [11] |
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114 (2014) 9987-10043.
DOI URL |
| [12] | D. Franklin, Z. He, P. Mastranzo Ortega, A. Safaei, P. Cencillo-Abad, S. Wu, D. Chanda, Proc. Natl. Acad, Proc. Natl. Acad. Sci. 117 (2020) 13350-13358. |
| [13] |
J.-P. Niemelä, G. Marin, M. Karppinen, Semicond. Sci. Technol. 32 (2017) 093005.
DOI URL |
| [14] |
M.M. Zhu, Z.H. Du, J. Ma, J. Appl. Phys. 108 (2010) 113119.
DOI URL |
| [15] |
C. Guillén, J. Herrero, Thin Solid Films 636 (2017) 193-199.
DOI URL |
| [16] |
S.S. Chng, M. Zhu, J. Wu, X. Wang, Z.K. Ng, K. Zhang, C. Liu, M. Shakerzadeh, S. Tsang, E.H.T. Teo, J. Mater. Chem. C 8 (2020) 4421-4431.
DOI URL |
| [17] |
M. Zhu, Z. Du, L. Jing, A.I. Yoong Tok, E.H. Tong Teo, Appl. Phys. Lett. 107 (2015) 031907.
DOI URL |
| [18] |
Y. Huo, J. Zhang, K. Dai, C. Liang, ACS Appl. Energy Mater. 4 (2021) 956-968.
DOI URL |
| [19] |
Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B-Environ. 241 (2019) 528-538.
DOI URL |
| [20] |
T. Hu, K. Dai, J. Zhang, S. Chen, Appl. Catal. B-Environ. 269 (2020) 118844.
DOI URL |
| [21] |
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919-9986.
DOI PMID |
| [22] |
Y. Lan, Y. Lu, Z. Ren, Nano Energy 2 (2013) 1031-1045.
DOI URL |
| [23] |
X. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891-2959.
DOI URL |
| [24] |
S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115 (2011) 13211-13241.
DOI URL |
| [25] |
Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, J. Mater. Chem. A 7 (2019) 13833-13859.
DOI URL |
| [26] |
M.M. Zhu, Z.H. Du, J. Ma, J. Appl. Phys. 106 (2009) 023113.
DOI URL |
| [27] |
M. Zhu, Z. Du, S.S. Chng, S.H. Tsang, E.H.T. Teo, J. Mater. Chem. C 6 (2018) 12919-12927.
DOI URL |
| [28] |
Y. Chimupala, G. Hyett, R. Simpson, R. Mitchell, R. Douthwaite, S.J. Milne, R.D. Brydson, RSC Adv. 4 (2014) 48507-48517.
DOI URL |
| [29] |
N. Satoh, T. Nakashima, K. Yamamoto, Sci. Rep. 3 (2013) 1959.
DOI URL |
| [30] |
J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H.K. Liu, S.X. Dou, D. Zhao, Adv. Mater. 29 (2017) 1700523.
DOI URL |
| [31] |
S. Sun, P. Song, J. Cui, S. Liang, Catal. Sci. Technol. 9 (2019) 4198-4215.
DOI URL |
| [32] |
X. Niu, Y.E. Du, Y. Liu, H. Qi, J. An, X. Yang, Q. Feng, RSC Adv. 7 (2017) 24616-24627.
DOI URL |
| [33] |
P.C. Ricci, C.M. Carbonaro, L. Stagi, M. Salis, A. Casu, S. Enzo, F. Delogu, J. Phys. Chem. C 117 (2013) 7850-7857.
DOI URL |
| [34] |
A. Fu, X. Chen, L. Tong, D. Wang, L. Liu, J. Ye, ACS Appl. Mater. Interfaces 11 (2019) 24154-24163.
DOI URL |
| [35] |
J. He, Y. Du, Y. Bai, J. An, X. Cai, Y. Chen, P. Wang, X. Yang, Q. Feng, Molecules 24 (2019) 2996.
DOI URL |
| [36] |
D.F. Swinehart, J. Chem. Educ. 39 (1962) 333-335.
DOI URL |
| [37] |
H. Zhu, H. Yang, Y. Ma, T.J. Lu, F. Xu, G.M. Genin, M. Lin, Adv. Funct. Mater. 30 (2020) 2000639.
DOI URL |
| [38] | E. Wang, T. He, L. Zhao, Y. Chen, Y. Cao, J. Mater. Chem. 21 (2011) 144-150. |
| [39] |
R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Appl. Catal. B-Environ. 126 (2012) 47-54.
DOI URL |
| [40] |
Y. Wen, H. Ding, Y. Shan, Nanoscale 3 (2011) 4411-4417.
DOI URL |
| [41] |
Y. Xiang, X. Wang, X. Zhang, H. Hou, K. Dai, Q. Huang, H. Chen, J. Mater. Chem. A 6 (2017) 153-159.
DOI URL |
| [42] |
H. Sun, S. Zeng, Q. He, P. She, K. Xu, Z. Liu, Dalt. Trans. 46 (2017) 3887-3894.
DOI URL |
| [43] |
Z.-J. Zhao, S.H. Hwang, S. Jeon, B. Hwang, J.-Y. Jung, J. Lee, S.-H. Park, J.-H. Jeong, Sci. Rep. 7 (2017) 8915.
DOI URL |
| [44] |
A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 134 (2012) 7600-7603.
DOI URL |
| [45] |
P.K. Prajapati, A. Kumar, S.L. Jain, ACS Sustain. Chem. Eng. 6 (2018) 7799-7809.
DOI URL |
| [46] |
B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Sci. Rep. 6 (2016) 32355.
DOI URL |
| [47] |
W.D. Zhu, C.W. Wang, J.B. Chen, Y. Li, J. Wang, Appl. Surf. Sci. 301 (2014) 525-529.
DOI URL |
| [48] |
L. Si, Z. Huang, K. Lv, D. Tang, C. Yang, J. Alloys Compd. 601 (2014) 88-93.
DOI URL |
| [1] | Ning Wang, Jing Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Yanli Ning, Yiteng Hu. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection [J]. J. Mater. Sci. Technol., 2022, 100(0): 12-19. |
| [2] | Jianjun Li, Feng Qin, Dingshun Yan, Wenjun Lu, Jiahao Yao. Shear instability in heterogeneous nanolayered Cu/Zr composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 81-91. |
| [3] | Muhammad Tahir, Beenish Tahir. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors [J]. J. Mater. Sci. Technol., 2022, 106(0): 195-210. |
| [4] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
| [5] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
| [6] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
| [7] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
| [8] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
| [9] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
| [10] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
| [11] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
| [12] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
| [13] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
| [14] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
| [15] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
