Please wait a minute...
J Mater Sci Technol  2004, Vol. 20 Issue (04): 463-466    DOI:
Research Articles Current Issue | Archive | Adv Search |
New Naturally Occurring Product Extract as Corrosion Inhibitor for 316 Stainless Steel in 5% HCl
T.Y.Soror
Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
Download:  HTML  PDF(442KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Medipolymorphol, a new sterol isolated from the whole plant of Medicago polymorpha Roxb was used as corrosion inhibitor for 316 stainless steel in 5% HCl at room temperature. Electrochemical techniques have been found to be reliable in evaluating corrosion characteristics of the system. Several techniques have been used including Tafel, linear polarization, potentiodynamic polarization, and open circuit potential (OCP) studies. The additives simultaneously deaccelerated the anodic process, intensified the cathodic process and provided a stable passive state, giving good inhibition efficiencies to stainless steel electrodes. In addition, adsorption isotherm have been fitted for the inhibitor under investigation.
Key words:  Medipolymorphol      Plant extract      Stainless steel      HCl      Corrosion inhibitor      
Received:  01 January 1900     
Corresponding Authors:  T.Y.Soror     E-mail:  tamers21us@yahoo.com

Cite this article: 

T.Y.Soror. New Naturally Occurring Product Extract as Corrosion Inhibitor for 316 Stainless Steel in 5% HCl. J Mater Sci Technol, 2004, 20(04): 463-466.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2004/V20/I04/463

[1] M.Schorr: M. Sc. Thesis, Technion Israel, Institute of Technology, Israel, 1971.
[2] A.Alon, M.Schorr and J.Yahalom: A literature review (IMI internal publication).
[3] E.Pelitti: Corrosion and Materials of Construction, chap. 10, vol. 1, part 2, ed by A. V. Slack, Marcel Dekker, New York, 1968, 827.
[4] The International Nickel Co., Corros. Eng. Bull., 1966, 4.
[5] E.E.Enbenso, J.Udofot, J.Kkpe and J.Ibok: Discovery and Innovation, 1998, 10(1-2) , 52.
[6] J.Ekpe, B.Ita and A.Bassey: Global Journal of Pure and Applied Sciences., 1997, 3(1) , 49.
[7] D.Mukherjee, F.Berchman, A.Rajsekkar, N.Sundarsanan, R.Mahalingam, S.Maruthamuthu, T.Thiruchelvam and Dergi Karaikudi: Anti Corrosion-Methods and Materials, 1997, 44(3) , 186.
[8] A.Pedersen and M.Hermansson: Biofouling, 1989, 1(4) , 313.
[9] B.Muller and M.Kurfess: Werkstoffe and Korrosion, 1993, 44(9) , 373.
[10] E.Khamis, F.Bellucci, R.M.Latanision and E.S.H.El-Ashry: Corrosion, 1991, 47(9) .
[11] S.T.Arab and E.A.Noor: Corrosion, 1993, 49(2) .
[12] N.R.Sobramanyan and S.M.Mayanna: J. Electrochim. Soc. India, 1984, 33, 27.
[13] L.Garrigues, N.Pebere and F.Dabosi: Electrochim. Acta, 1996, 41, 1209.
[14] M.Metikos, R.Babic, Z.Grubac and S.Brimic: J. Appl. Elec-trochem., 1994, 24, 325, 772.
[15] U.R.Evans: Corrosion and Oxidation of Metals, EdwardArnold, London, 1960, 898.
[16] J.M.Abdel-Kader and A.M.Shams El-din: Bri. Corros. J.,1979, 14, 40.
[17] B.Al-Andouli, F.Eltaib, F.El-Nizami and B.Ateya: Extended Abstracts of the Electrochemical Society, Fall Meeting,Chicago, Illinois, Electrochem. Soc., Pennington, NJ, 1988,188.
[18] I.Langmuir: J. Amer. Chem. Soc., 1947, 39, 1848.
[19] D.Schweinsberg, G.George, A.Nanayakkara and D.Steinert:Corros. Sci., 1988, 28, 33.
[20] P.Mansfeld: Corrosion Mechanisms, Marcel Dekker, U.S.A.,1987, 119.
[21] N.Hacherman: Corrosion, 1982, 18, 822.
[22] F.Donhue and K.Nobe: J. Electrochem. Soc., 1965, 112, 886.
[23] G.Poling: J. Electrochem. Soc., 1967, 114, 1209.
[24] T.Murakawa, T.Kato, S.Naggura and N.Hackerman: Corros.Sci., 1988, 8, 841.
[25] Y.Matsuda, Y.Kinuhata, M.Okahara, S.Kamari andH.Tamura: Corros. Sci., 1970, 10, 179.
[26] M.Kaminiski and Z.Szklarska-Simialowska: Corros. Sci., 1978,18, 557.
[27] B.Ateya: J. Electroanal Chem., 1977, 76, 191.
[28] K.Nobe and N.Eldakar: Corrosion, 1981, 37, 271.
[1] Hongwang Zhang, Yiming Zhao, Yuhui Wang, Chunling Zhang, Yan Peng. On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation[J]. 材料科学与技术, 2020, 44(0): 148-159.
[2] Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation[J]. 材料科学与技术, 2020, 41(0): 209-218.
[3] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[4] Na Wei, Yuan Lin, Zhenkui Li, Wenxia Sun, Guosong Zhang, Mingliang Wang, Hongzhi Cui. One-dimensional Ag2S/ZnS/ZnO nanorod array films for photocathodic protection for 304 stainless steel[J]. 材料科学与技术, 2020, 42(0): 156-162.
[5] C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films[J]. 材料科学与技术, 2020, 37(0): 85-95.
[6] S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel[J]. 材料科学与技术, 2020, 37(0): 161-172.
[7] Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel[J]. 材料科学与技术, 2020, 36(0): 65-69.
[8] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[9] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[10] Jingjing Yang, Yun Wang, Fangzhi Li, Wenpu Huang, Guanyi Jing, Zemin Wang, Xiaoyan Zeng. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints[J]. 材料科学与技术, 2019, 35(9): 1817-1824.
[11] Peize Cheng, Ning Zhong, Nianwei Dai, Xuan Wu, Jin Li, Yiming Jiang. Intergranular corrosion behavior and mechanism of the stabilized ultra-pure 430LX ferritic stainless steel[J]. 材料科学与技术, 2019, 35(8): 1787-1796.
[12] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[13] D. Wang, C.T. Chi, W.Q. Wang, Y.L. Li, M.S. Wang, X.G. Chen, Z.H. Chen, X.P. Cheng, Y.J. Xie. The effects of fabrication atmosphere condition on the microstructural and mechanical properties of laser direct manufactured stainless steel 17-4 PH[J]. 材料科学与技术, 2019, 35(7): 1315-1322.
[14] Decheng Kong, Chaofang Dong, Xiaoqing Ni, Liang Zhang, Jizheng Yao, Cheng Man, Xuequn Cheng, Kui Xiao, Xiaogang Li. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. 材料科学与技术, 2019, 35(7): 1499-1507.
[15] M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel[J]. 材料科学与技术, 2019, 35(4): 491-498.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.