Please wait a minute...
J Mater Sci Technol  2004, Vol. 20 Issue (04): 431-434    DOI:
Research Articles Current Issue | Archive | Adv Search |
Energy-storage Welding Connection Characteristics of Rapid Solidification AZ91D Mg Alloy Ribbons
Jinfeng XU, Qiuya ZHAI, Sen YUAN
School of Materials Science and Engineering, Xi’an University of Technology, Xi0an 710048, China
Download:  HTML  PDF(643KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Energy-storage welding connection characteristics of rapidly solidified AZ91D Mg alloy ribbons with 40~70 μm thickness are investigated using a microtype energy-storage welding machine. The microstructure and performance of the connection joints are analyzed and studied. The research results indicate that energy-storage welding is able to realize the spot welding connection of AZ9ID Mg alloy ribbons. The welding nugget consists of developed α-Mg equiaxed grains with the sizes of 1.2~2.7 μm and intergranular distributed β-Mg17Al12 compounds. The thickness of bond zone is about 4 μm and the solidification microstructure is characterized by the fine equiaxed grains with the sizes of 0.8~1.2 μm, and grain boundary has become coarsening. The columnar crystal in HAZ also becomes slightly coarsening and the grain boundary has broadened, however, there is no obvious change in its primitive morphology and crystallographic direction. When welding energy is about 2.0 J, the welding joints with higher shear strength and smaller electrical resistivity are obtained.
Key words:  AZ91D      Rapid solidification      Energy-storage welding      Microstructures      Properties      
Received:  01 January 1900     
Corresponding Authors:  Jinfeng XU     E-mail:

Cite this article: 

Jinfeng XU, Qiuya ZHAI, Sen YUAN. Energy-storage Welding Connection Characteristics of Rapid Solidification AZ91D Mg Alloy Ribbons. J Mater Sci Technol, 2004, 20(04): 431-434.

URL:     OR

[1] B.L.Mordike and T.Ebert: Mater. Sci. Bug., 2001, 302A, 37.
[2] R.M.Wang, A.Eliezer and E.Gutman: Mater. Sci. Eng., 2002,344A, 279.
[3] A.Munitz, C.Cotler, A.Stern and G.Kohn: Mater. Sci. Eng.,2001, 302A, 68.
[4] Guenther Schubert and Armando Joaquium: Advanced Mater.& Proc., 2001, 159(8) , 67.
[5] M.Marya and G.R.Edwards: J. Mater. Eng. Perform., 2001,10(4) , 435.
[6] H.ZHAO and T.Debroy: Welding Research Suppl., 2001, (8) ,204.
[7] Koichi Ogawa, Hiroshi Yamaguchi and Hiizu Ochi: J. LightMetal Welding & Construe., 2003, 41(2) , 21.
[8] J.A.Esparza, W.C.Davis and E.A.Trillo: J. Mater. Sci. Lett.,2002, 21, 917.
[9] Seung Hwan C.Park, Yutaka S.Sato and Hiroyuki Kokawa: Scripta Mater., 2003, 49, 161.
[10] Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe and Kenji Higashi: Mater. Sci. Eng., 2003, 339A, 328.
[11] Hidetoshi Somekawa, Hiroyuki Watanabe and Toshiji Mukai and Kenji Higashi: Scripta Mater., 2003, 48, 1249.
[12] M.B.D.Ellis: Inter. Mater. Rev., 1996, 41(2) , 41.
[13] Y.Zhang and D.Taylor: Finite Elements in Analysis and Design, 2001, 37, 1013.
[1] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[2] Hao Du, Chuanyu Cui, Housheng Liu, Guihong Song, Tianying Xiong. Improvement on compressive properties of lotus-type porous copper by a nickel coating on pore walls[J]. 材料科学与技术, 2020, 37(0): 114-122.
[3] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[4] S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel[J]. 材料科学与技术, 2020, 37(0): 161-172.
[5] Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification[J]. 材料科学与技术, 2020, 38(0): 19-27.
[6] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[7] Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C[J]. 材料科学与技术, 2020, 38(0): 189-196.
[8] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[9] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[10] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[11] Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage[J]. 材料科学与技术, 2020, 36(0): 70-78.
[12] Junyuan Bai, Xueyong Pang, Xiangying Meng, Hongbo Xie, Hucheng Pan, Yuping Ren, Min Jiang, Gaowu Qin. Anomalous crystal structure of γ″ phase in the Mg-RE-Zn(Ag) series alloys: Causality clarified by ab initio study[J]. 材料科学与技术, 2020, 36(0): 167-175.
[13] Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 44(0): 76-95.
[14] Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides[J]. 材料科学与技术, 2020, 37(0): 104-113.
[15] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.