Please wait a minute...
J Mater Sci Technol  2004, Vol. 20 Issue (04): 390-394    DOI:
Research Articles Current Issue | Archive | Adv Search |
Separation of the Martensite in TiNi Fiber Reinforced Aluminum Matrix Composite
Yanjun ZHENG, Lishan CU, IYan LI, Dazhi YANG
Department of Materials Science and Engineering, University of Petroleum, Beijing 102249, China
Download:  HTML  PDF(815KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.
Key words:  Shape memory alloy      TiNi      Composite      Martensitic transformation      
Received:  01 January 1900     
Corresponding Authors:  Yanjun ZHENG     E-mail:  lshcui@bjpeu.edu.cn

Cite this article: 

Yanjun ZHENG, Lishan CU, IYan LI, Dazhi YANG. Separation of the Martensite in TiNi Fiber Reinforced Aluminum Matrix Composite. J Mater Sci Technol, 2004, 20(04): 390-394.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2004/V20/I04/390

[1] Y.Furuya, A.Sasaki and M.Taya: Mater. Trans., JIM, 1993,34, 224.
[2] M.Taya, Y.Furuya, Y.Yamada, R.Watanabe, S.Shibata, andT.Mori: Proc. Smart Mater., SPIE, 1993, 1916, 373.
[3] W.D.Armstrong and H.Kino: J. Intel. Mater. Syst. Str., 1995,6, 809.
[4] W.D.Armstrong, T.Lorentzen, P.Brondsted and P.H.Larsen:Acta Mater., 1998, 46, 3455.
[5] W.D.Armstrong and T.Lorentzen: Scripta Mater., 1997, 36,1037.
[6] C.A.Rogers, C.Liang and J.Jia: Comput. Struct., 1991, 38,569.
[7] D.A.Hebda, M.E.Whitlock, J.B.Ditman and S.R. White: J. Intel. Mater. Syst. Str., 1995, 6, 220.
[8] Y.Puruya: J. Intel. Mater. Syst. Str., 1996, 7, 321.
[9] Y.Puruya and Minoru Taya: J. Jpn. I. Met, 1996, 60, 1163.
[10] A.Baz, K.Iman and J.McCoy: J. Sound Vib., 1990, 146, 33.
[11] A.Baz and J.Ro: Compos. Eng., 1994, 4, 567.
[12] C.Liang, C.A.Rogers and C.R.Fuller: J. Sound Vib., 1991,145,23.
[13] C.R.Fuller, C.A.Rogers and H.H.Robertshaw: J. Sound Vib.,1992, 157, 19.
[14] S.N.Jeffrey and C.A.Rogers: J. Intel. Mater. Syst. Str., 1994,5, 530.
[15] Y.J.Zheng, L.S.Cui, D.Zhu and D.Z.Yang: Mater. Lett., 2000,43, 91.
[16] Z.G.Wei, C.Y.Tang, W.B.Lee, L.S.Cui and D.Z.Yang: Mater.Lett., 1997, 32, 313.
[17] J.E.Bidaux, J.A.E.Manson and R.Gotthardt: Proc. the FirstInt. Conf. on Shape Memory and Superelastic Technol., eds.A.Pelton, D.Hodgson and T.Duerig, Asilomar, Pacific Grove,California, 1994, 37.
[18] P.Sittner, D.Vokoun, G.N.Dayananda, R.Stalmans: Mater.Sci. Eng., 2000, A2S6, 298.
[19] W.Tang and R.Sandstrom: J. de Physique , 1995, 5, C8-185.
[20] L.C.Brinson: J. Intel Mater. Syst. Str., 1993, 4, 229.
[21] L.C.Brinson, A.Bekker and S.Hwang: J. Intel. Mater. Syst.Str., 1996, 7, 97.
[22] K.Otsuka and C.M.Wayman: in Shape memory Materials,eds. K.Otsuka and C.M.Wayman, Cambridge University Press,1998, p1.
[23] ibid, p27.
[24] M.Piao, K.Otsuka, S.Miyazaki and H.Horikawa: Mater. Trans.JIM, 1993, 34, 919.
[25] M.Piao, S.Miyazaki and K.Otsuka: Mater. Trans. JIM, 1992,33, 346.
[26] H.C.Lin, S.K.Wu, T.S.Chou and H.P.Kao: Acta Metall.Mater., 1991, 39, 2069.
[27] H.C.Lin, S.K.Wu and J.C.Lin: Proc. the International Conference on Martensitic Transformation, Monterey Institute forAdvanced Studies, Monterey, 875.
[28] C.S.Zhang, L.C.Zhao, T.W.Duerig and M.Wayman: ScriptaMetall, 1990, 24, 1807.
[1] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[2] Min Su Park, Jin Kyu Kim, Tong-Seok Han, Jung Tae Park, Jong Hak Kim. Impregnation approach for poly(vinylidene fluoride)/tin oxide nanotube composites with high tribological performance[J]. 材料科学与技术, 2020, 37(0): 19-25.
[3] Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J]. 材料科学与技术, 2020, 37(0): 46-54.
[4] Longjun Wu, Zhengwang Zhu, Dingming Liu, Huameng Fu, Hong Li, Aimin Wang, Hongwei Zhang, Zhengkun Li, Long Zhang, Haifeng Zhang. Deformation behavior of a TiZr-based metallic glass composite containing dendrites in the supercooled liquid region[J]. 材料科学与技术, 2020, 37(0): 64-70.
[5] Wang Zhongren, Gao Quanbin, Lv Peng, Li Xiuwan, Wang Xinghui, Qu Baihua. Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes[J]. 材料科学与技术, 2020, 38(0): 119-124.
[6] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[7] Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage[J]. 材料科学与技术, 2020, 36(0): 70-78.
[8] Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models[J]. 材料科学与技术, 2020, 36(0): 176-189.
[9] Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃[J]. 材料科学与技术, 2020, 45(0): 125-132.
[10] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[11] Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures[J]. 材料科学与技术, 2020, 43(0): 126-134.
[12] Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys[J]. 材料科学与技术, 2020, 44(0): 31-41.
[13] Tran Thang Q., Yoong Lee Jeremy Kong, Amutha Chinnappan, Loc Nguyen Huu, Tran T. Long, Dongxiao Ji, W.A.D.M. Jayathilaka, Kumar Vishnu Vijay, Seeram Ramakrishna. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables[J]. 材料科学与技术, 2020, 42(0): 46-53.
[14] Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics[J]. 材料科学与技术, 2020, 40(0): 135-145.
[15] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.