J. Mater. Sci. Technol. ›› 2022, Vol. 124: 174-181.DOI: 10.1016/j.jmst.2022.01.027
• Research Article • Previous Articles Next Articles
Xiaochen Shena,c,1, Chenglong Hub,c,1,*(), Wenling Renc, Rongzhi Zhaob,c, Lianze Jib,c, Xuefeng Zhangb,c,*(
), Xinglong Donga
Received:
2021-10-19
Revised:
2021-12-01
Accepted:
2022-01-10
Published:
2022-10-10
Online:
2022-04-06
Contact:
Chenglong Hu,Xuefeng Zhang
About author:
zhang@hdu.edu.cn (X. Zhang).Xiaochen Shen, Chenglong Hu, Wenling Ren, Rongzhi Zhao, Lianze Ji, Xuefeng Zhang, Xinglong Dong. Optimizing magnetic/dielectric matching in permalloy/carbonized cotton fiber composites by strain-tunable ferromagnetic resonance and defect-induced dielectric polarization[J]. J. Mater. Sci. Technol., 2022, 124: 174-181.
Fig. 1. (a) Scheme of preparation of CC/Py and CCF/Pys. SEM images and elemental mapping of (b-f) CC/Py, (g-k) CCF/Py-200, (l-p) CCF/Py-300, and (q-u) CCF/Py-400.
Fig. 2. (a) Diameter statistics of the carbon fibers. (b) XRD spectra of the samples. (c) Lattice constant d and stress σ of CCF/Py-200, CCF/Py-300, and CCF/Py-400. (d) Schematic diagram of the stress on the magnetic permalloy layer.
Fig. 4. X-ray photoelectron spectroscopy analysis. High-resolution XPS survey of C element of (a) CC/Py, (b) CCF/Py-200, (c) CCF/Py-300 and (d) CCF/Py-400; (e) histogram of XPS survey of C element.
Fig. 6. (a) Real parts of relative complex permittivity and (b) imaginary parts of relative complex permittivity at 8.2-12.4 GHz of CC/Py, CCF/Py-200, CCF/Py-300, and CCF/Py-400.
Fig. 8. (a) Spatial magnetizations of the magnetic permalloy layer based on the strain-induced anisotropy constant (Keff). (b) Frequency dependence of the amplitude under different Keff. (c) Ferromagnetic resonance frequency fr varied with Keff.
[1] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[2] |
S. Lin, H.Y. Wang, F. Wu, Q.M. Wang, X.P. Bai, D. Zu, J.N. Song, D. Wang, Z.L. Liu, Z.W. Li, N. Tao, H. Kai, M. Lei, B. Li, H. Wu, NPJ Flex. Electron. 3 (2019) 6.
DOI URL |
[3] |
Y.H. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore, L. Sorrentino, M. Lavorgna, H.S. Xia, S. Iannace, Nanoscale 11 (2019) 1011-1020.
DOI URL |
[4] |
M. Crespo, N. Méndez, M. Gonzalez, J. Baselga, J. Pozuelo, Carbon 74 (2014) 63-72.
DOI URL |
[5] |
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim, J. Kwon, P. Won, S. Hong, S.H. Ko, ACS Appl. Mater. Interfaces 9 (2017) 44609-44616.
DOI URL |
[6] |
S. Gupta, N.H. Tai, Carbon 152 (2019) 159-187.
DOI URL |
[7] |
F. Fang, Y.Q. Li, H.M. Xiao, N. Hu, S.Y. Fu, J. Mater. Chem. C 4 (2016) 4193-4203.
DOI URL |
[8] |
J.C. Liu, S. Lin, K. Huang, C. Jia, Q.M. Wang, Z.W. Li, J.N. Song, Z.L. Liu, H.Y. Wang, M. Lei, H. Wu, NPJ Flex. Electron. 4 (2020) 10.
DOI URL |
[9] |
A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, A. Chandra, A. Chandra, R.P. Tandon, A.K. Dhawan, Carbon 50 (2012) 3868-3875.
DOI URL |
[10] |
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
[11] |
Y. Wu, Z.Y. Wang, X. Liu, X. Shen, Q.B. Zheng, Q. Xue, J.K. Kim, ACS Appl. Mater. Interfaces 9 (2017) 9059-9069.
DOI URL |
[12] |
P.T. Xie, Y. Liu, M. Feng, M. Niu, C.Z. Liu, N.N. Wu, K.Y. Sui, R.R. Patil, D. Pan, Z.H. Guo, R.H. Fan, Adv. Compos. Hybrid Mater. 4 (2021) 173-185.
DOI URL |
[13] |
Y.J. Tan, J. Li, J.H. Cai, X.H. Tang, J.H. Liu, Z.Q. Hu, M. Wang, Compos. Part B Eng. 177 (2019) 107378.
DOI URL |
[14] |
J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Compos. Part A Appl. Sci. Manuf. 140 (2021) 106188.
DOI URL |
[15] |
Y. Chen, H.B. Zhang, Y.B. Yang, M. Wang, A.Y. Cao, Z.Z. Yu, Adv. Funct. Mater. 26 (2016) 447-455.
DOI URL |
[16] |
N. Li, Y. Huang, F. Du, X.B. He, X. Lin, Y.F. Gao, F.F. Li, Y.S. Chen, P.C. Eklund, Nano Lett. 6 (2006) 1141-1145.
DOI URL |
[17] |
H.T. Guan, D.D.L. Chung, Carbon 152 (2019) 898-908.
DOI URL |
[18] |
Y. Yuan, X.X. Sun, M.L. Yang, F. Xu, Z.S. Lin, X. Zhao, Y.J. Ding, J.J. Li, W.L. Yin, Q.Y. Peng, X.D. He, Y.B. Li, ACS Appl. Mater. Interfaces 9 (2017) 21371-21381.
DOI URL |
[19] |
X.H. Ma, Y. Li, B. Shen, L.H. Zhang, Z.P. Chen, Y.F. Liu, W.T. Zhai, W.G. Zheng, ACS Appl. Mater. Interfaces 10 (2018) 38255-38263.
DOI URL |
[20] |
L. Huang, J.J. Li, Z.J. Wang, Y.B. Li, X.D. He, Y. Yuan, Carbon 143 (2019) 507-516.
DOI |
[21] |
S.C. Zhao, L.L. Yan, X.D. Tian, Y.Q. Liu, C.Q. Chen, Y.Q. Li, J.K. Zhang, Y. Song, Y. Qin, Nano Res. 11 (2018) 530-541.
DOI URL |
[22] |
C. Kittel, Phys. Rev. 73 (1948) 155.
DOI URL |
[23] |
S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, S. Sasaki, Angew. Chem. Int. Ed. 119 (2007) 8544-8547.
DOI URL |
[24] |
A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, S. Ohkoshi, J. Am. Chem. Soc. 131 (2009) 1170-1173.
DOI URL |
[25] |
R.K. Srivastava, T.N. Narayanan, A.P. Reena Mary, M.R. Anantharaman, A. Srivas-tava, R. Vajtai, P.M. Ajauan, Appl. Phys. Lett. 99 (2011) 113116.
DOI URL |
[26] |
K.Y. Park, J.H. Han, S.B. Lee, J.W. Yi, Compos. Part A Appl. Sci. Manuf. 42 (2011) 573-578.
DOI URL |
[27] |
Q.X. Yang, L. Liu, D. Hui, M. Chipara, Compos. Part B Eng. 87 (2016) 256-262.
DOI URL |
[28] |
J. Xiang, J.L. Li, X.H. Zhang, Q. Ye, J.H. Xu, X.Q. Shen, J. Mater. Chem. A 2 (2014) 16905-16914.
DOI URL |
[29] |
T. Guo, B. Huang, C.G. Li, Y.M. Lou, X.Z. Tang, X.Z. Huang, J.L. Yue, Ceram. Int. 47 (2021) 5221-5226.
DOI URL |
[30] | C. Kittel, Phys. Rev. 71 (1947) 270. |
[31] |
N.N. Phuoc, G. Chai, C.K. Ong, J. Appl. Phys. 112 (2012) 113908.
DOI URL |
[32] |
Y. Yang, B.L. Liu, D.M. Tang, B.S. Zhang, M. Lu, H.X. Lu, J. Appl. Phys. 108 (2010) 073902.
DOI URL |
[33] |
D.R. Cao, J.L. Du, S.F. Zhang, L.N. Pan, Z.K. Wang, H.M. Feng, Z.T. Zhu, J.B. Wang, Q.F. Liu, Sci. Adv. Mater. 8 (2016) 1061-1065.
DOI URL |
[34] |
J. Zhang, W.K. Lee, R. Tu, D. Rhee, R.Z. Zhao, X.Y. Wang, X.L. Liu, X. Hu, X.F. Zhang, T.W. Odom, M. Yan, Nano Lett. 21 (2021) 5430-5437.
DOI PMID |
[35] |
J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nat. Nanotechnol. 8 (2013) 839-844.
DOI PMID |
[36] |
A. Fert, V. Cros, J. Sampaio, Nat. Nanotechnol. 8 (2013) 152-156.
DOI URL |
[37] | Donahue M.J., Porter D.G., OOMMF User’s Guide, Version 1.0, Interagency Re- port No. NISTIR 6376, National Institute of Standards and Technology, Gaithers- burg, 1999. |
[38] |
R.Z. Zhao, C.L. Hu, L.Z. Ji, W.C. Chen, X.F. Zhang, Sci. China Phys. Mech. Astron. 63 (2020) 267511.
DOI URL |
[39] |
R.L. Conte, Z.Y. Xiao, C. Chen, C.V. Stan, J. Gorchon, A. El-Ghazaly, M.E. Nowakowski, H. Sohn, A. Pattabi, A. Scholl, N. Tamura, A. Sepulveda, G.P. Carman, R.N. Candler, J. Bokor, Nano Lett. 18 (2018) 1952-1961.
DOI URL |
[40] |
R.D. McMichael, M.J. Donahue, D.G. Porter, J. Appl. Phys. 85 (1999) 5816-5818.
DOI URL |
[41] | C. Soshin, Physics of Ferromagnetism, Oxford University Press, Oxford, 2009. |
[42] |
H.H. Hu, T. Gao, X.N Zhao, J. Zhang, Y.H. Zhang, G.W. Qin, X.F. Zhang, Carbon 153 (2019) 330-336.
DOI URL |
[43] |
Y.B. An, Q.Z. Zhu, L.F. Hu, S.K. Yu, Q. Zhao, B. Xu, J. Mater. Chem. A 4 (2016) 15605-15611.
DOI URL |
[44] |
D.S. Bin, X.J. Lin, Y.G. Sun, Y.S. Xu, K. Zhang, A.M. Cao, L.J. Wan, J. Am. Chem. Soc. 140 (2018) 7127-7134.
DOI URL |
[45] | B.Y. Yavorsky, I. Mertig, A.Y. Perlov, A.N. Yaresko, V.N. Antonov, Phys. Rev. B 66 (2002) 553-562. |
[46] | U.P. Agarwal, H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne, in: Hand- book of Nanocellulose and Cellulose Nanocomposites, John Wiley & Sons, 2017, pp. 609-625. |
[47] |
M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10 (2010) 751-758.
DOI PMID |
[48] |
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Pis-canec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401.
DOI URL |
[49] |
C.L. Hu, H.P. Liu, Y.H. Zhang, M. Zhang, J.Y. Yu, X.G. Liu, X.F. Zhang, J. Mater. Sci. 54 (2019) 2417-2426.
DOI URL |
[50] |
L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11 (2011) 3190-3196.
DOI PMID |
[51] |
L.N. Yang, J.G. Hu, L.L. He, J. Tang, Y.C. Zhou, J. Li, K.X. Ding, Chem. Eng. J. 327 (2017) 694-704.
DOI URL |
[52] |
Y.X. Li, R.G. Liu, X.Y. Pang, X.N. Zhao, Y.H. Zhang, G.W. Qin, X.F. Zhang, Carbon 126 (2018) 372-381.
DOI URL |
[53] |
S. Hussain, P. Jha, A. Chouksey, R. Raman, S.S. Islam, T. Islam, P.K. Choudhary, J. Mod. Phys. 2 (2011) 538-543.
DOI URL |
[54] |
M. Bruna, A.K. Ott, M. Ijäs, D. Yoon, U. Sassi, A.C. Ferrari, Acs Nano 8 (2014) 7432-7441.
DOI URL |
[55] |
B. Kariminejad, M. Salami-Kalajahi, H. Roghani-Mamaqani, A. Noparvar-Qare-bagh, Polym. Compos. 38 (2017) E515-E524.
DOI URL |
[56] |
V.L. Kuznetsov, S.N. Bokov-Sirosh, S.I. Moseenkov, A.V. Ishchenko, D.V. Kras-nikov, M.A. Kazakova, A.I. Romamenko, E.N. Tkachev, E.D. Obraztsova, Phys. Status Solidi B 251 (2014) 2444-2450.
DOI URL |
[57] |
D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Heong, H.S. Shin, M. Chhowalla, Science 353 (2016) 1413-1416.
DOI URL |
[58] |
S. Vinod, C.S. Tiwary, L.D. Machado, S. Ozden, R. Vajtai, D.S. Galvao, P.M. Ajayan, Nanoscale 8 (2016) 15857-15863.
DOI URL |
[59] |
M. Kalbac, Y.P. Hsieh, H. Farhat, L. Kavan, M. Hofmann, J. Kong, M.S. Dressel-haus, Nano Lett. 10 (2010) 4619-4626.
DOI URL |
[60] |
X.F. Zhang, Y. Rao, J.J. Guo, G.W. Qin, Carbon 96 (2016) 972-979.
DOI URL |
[61] |
C. Kim, J. Lee, W. Wang, J. Fortner, Nanomaterials 10 (2020) 1228.
DOI URL |
[62] |
S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Adv. Energy Mater. 8 (2018) 1702545.
DOI URL |
[63] |
Y.J. Zhu, J.J. Xue, T.T. Xu, G.Y. He, H.Q. Chen, J. Mater. Sci. Mater. Electron. 28 (2017) 8519-8528.
DOI URL |
[64] |
M. Mousavi, A. Habibi-Yangjeh, D. Seifzadeh, J. Mater. Sci. Technol. 34 (2018) 1638-1651.
DOI |
[65] |
T. Gao, Z.Y. Zhu, Y.X. Li, H.H. Hu, H.W. Rong, W.W. Liu, T. Yang, X.F. Zhang, Carbon 177 (2021) 44-51.
DOI URL |
[66] |
Y.X. Li, X.F. Liu, R.G. Liu, X.Y. Pang, Y.H. Zhang, G.W. Qin, X.F. Zhang, Carbon 139 (2018) 181-188.
DOI URL |
[67] |
C. Brosseau, W.N. Dong, A. Mdarhri, J. Appl. Phys. 104 (2008) 074907.
DOI URL |
[68] |
J.L. Liu, L.M. Zhang, D.Y. Zang, H.J Wu, Adv. Funct. Mater. 31 (2021) 2105018.
DOI URL |
[69] |
J.L. Liu, L.M. Zhang, H.J Wu, D.Y. Zang, Chem. Eng. J. 411 (2021) 128601.
DOI URL |
[70] |
J.L. Liu, M. Wang, L.M. Zhang, D.Y. Zang, H. Liu, L.F. Liotta, H.J. Wu, J. Colloid Interface Sci. 591 (2021) 148-160.
DOI URL |
[71] |
J.L. Liu, L.M. Zhang, H.J Wu, J. Phys. D Appl. Phys. 54 (2021) 203001.
DOI URL |
[72] |
H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, J. Mater. Chem. C 3 (2015) 7677-7690.
DOI URL |
[73] |
C.L. Hu, R.Z. Zhao, L.Z. Ji, W.C. Chen, S. Bandaru, X.F. Zhang, J. Magn. Magn. Mater. 513 (2020) 166954.
DOI URL |
[74] |
A.V. Sadovnikov, A.A. Grachev, S.E. Sheshukova, Y.P. Sharaevskii, A.A. Serdobint-sev, D.M. Mitin, S.A. Nikitov, Phys. Rev. Lett. 120 (2018) 257203.
DOI URL |
[75] |
L. Jing, M. Liu, D. Reed, Y.H. Ren, N.X. Sun, Adv. Mater. 21 (2009) 4711-4715.
DOI URL |
[1] | Huipeng Lv, Chen Wu, Faxiang Qin, Huaxin Peng, Mi Yan. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 90(0): 1-8. |
[2] | Lichuan Jin, Caiyun Hong, Dainan Zhang, Peng Gao, Yiheng Rao, Gang Wang, Qinghui Yang, Zhiyong Zhong, Huaiwu Zhang. Synthesis of yttrium iron garnet/bismuth quantum dot heterostructures with localized plasmon enhanced magneto-optical performance [J]. J. Mater. Sci. Technol., 2020, 51(0): 32-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||