Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 1-38    DOI: 10.1016/j.jmst.2017.11.029
Orginal Article Current Issue | Archive | Adv Search |
Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review
G.K. Padhy, C.S. Wu*(), S. Gao
MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials Joining, Shandong University, Jinan, 250061, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Friction stir welding (FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophisticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline. A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered frictions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the category of welding are those applied for joining of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.

Key words:  Friction stir welding      Friction stir processing      Friction stir scribe      Friction stir riveting      Friction stir channeling      Friction stir forming      Friction stir surfacing      Friction stir additive manufacturing      Friction stir cladding     
Received:  08 March 2017     
Corresponding Authors:  Wu C.S.     E-mail:  wucs@sdu.edu.cn

Cite this article: 

G.K. Padhy, C.S. Wu, S. Gao. Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review. J. Mater. Sci. Technol., 2018, 34(1): 1-38.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.11.029     OR     https://www.jmst.org/EN/Y2018/V34/I1/1

Fig. 1.  Classification of friction stir based technologies.
Fig. 2.  Third body region in friction stir operations with (a) Non-consumable tool, as in friction stir welding, (b) Consumable tool, as in friction surfacing.
Fig. 3.  FSW process (a) schematic [35], and (b) various stages [36].
Fig. 4.  Macro-section of friction stir welded joint depicting SAZ, PAZ, WBZ and onion ring features [39].
Fig. 5.  (a) Typical weld macrograph of 2024 Al alloy in FSW [63], microstructures of 6061-T6 Al alloy friction stir weld (b) Stir zone, (c) TMAZ, (d) HAZ, and (e) BM [64].
Fig. 6.  Schematic diagram of SSFSW [75].
Fig. 7.  Optical micrographs of SSFSWed Al 7075-T651 (a) macrograph, (b) BM, (c) TMAZ, (d) HAZ, (e) SZ [72].
Fig. 8.  (a) Schematic of RDRFSW; aluminium alloy 2219-T6 welded joint prepared by RDRFSW [77], (b) Macrograph [76], and (c) Microstructure [76].
Fig. 9.  Bobbin tool (a) Schematic [89], and (b) photograph [88]; BTFSW process (c) schematic, 1: workpiece, 2: top shoulder, 3: pin, 4: bottom shoulder, 5: acting forces [86], and (d) experimental setup [90].
Fig. 10.  Macrograph of weld in BTFSW process [90].
Fig. 11.  Schematics of different process stages of (a) FSSW, (b) Refill FSSW [98], and (c) double sided FSSW.
Fig. 12.  Short traverse FSSW processes (a) stitch FSSW, and (b) swing FSSW [98].
Fig. 13.  Macrograph of a friction stir spot welded 7075-T6 alloy [123], and (b-f) Close up views of different regions in friction stir spot welded 6061-T6 alloy [124].
Fig. 14.  Schematic diagrams and types of rivets of the different FSR processes, FricRiveting [137,140], FSBR [142], FSPR [130], RFDR [155] RFPR [156].
Fig. 15.  Joint features in different types of FSR processes (a) FricRiveting [139], (b) FSBR [150], (c) FSPR [130], (d) RFDR [155], (e) RFPR [156], and (f) FSR [132].
Fig. 16.  (a) FSS tool with single and double scribe cutter [157], and (b) Schematic of FSS process [160].
Fig. 17.  Typical macro cross section of FSS weld [159].
Fig. 18.  Possibility of IMC layer formation (a) IMC in uncoated steel [165], and (b) IMC in coated steel [166].
Fig. 19.  Selected microstructures to show FSP causes (a) grain refinement in Al 7075 alloy [169] (b) Al-Mg-Mn/SiC surface composite formation with good bonding [187], (c) Al3Ti intermetallic particle beak up and homogenization on the surface of Al-Ti-Cu alloy [186] and (d) Uniform distribution of SiC reinforcement particles in Al-matrix in bulk scale [167].
Fig. 20.  Superplastic deformation in Al alloy after friction stir processing (a) at 490 °C, (b) at 525 °C, and (c) at a constant strain rate [251,252].
Fig. 21.  Schematics of (a) FSC [260], (b) A-FSC [21,264], and (c) M-FSC [275,276] processes.
Fig. 22.  Channelled cross section (a) in FSC, where A&B - channel nugget, C - parent material, D - channel, and E - material from the channel nugget deposited on the surface [260], (b) in M-FSC, where SAZ - shoulder affected zone, EZ - extrusion zone, CZ - channel zone [279], and (c) Channel in A-FSC, showing also the [268].
Fig. 23.  Channel surface features in (a) FSC [251], and (b) A-FSC [266].
Fig. 24.  Friction surfacing process (Figure adopted from [282]) (a) Fixture and set up, (b) Substrate-consumable contact and initial deformation of consumable tip, (c) Consumable deposition on substrate, and (d) Deposit.
Fig. 25.  Variation in width and surface finish of deposit with rotation speed [289].
Fig. 26.  Variation in quality of H13 mild steel deposit on low carbon steel due to (a) rotation speed, and (b) Travel Speed (Replotted using the data adopted from [294]).
Fig. 27.  (.1) Thermo-mechanical events in the FS [287], (.2) Microstructural transformations during the FS of 6XXX Al on 2XXX Al on (a) Consumable base material, (b) heat affected zone, (c) compression-driven TMAZ, (d) torsion-driven TMAZ, (e and f) fully recrystallized microstructure, (g) deposited material and (h) bonding interface [21].
Fig. 28.  FSSC process (a) schematic of first approach, (b) side view first approach, (c) schematic of second approach with one cladding rod, and (d) schematic of second approach with two cladding rods [305].
Fig. 29.  Microstructure of clad layer interface of AA1050 deposited on the AA2024 substrate (a) double rod cladding and approach 1, (b) double rod cladding and approach 2 and (c) single rod cladding and approach 2 [305].
Fig. 30.  Schematics of FSAM (a) rotary friction welding and friction deposition [321], (b) friction deposition and additive manufacturing [322], and (c) additive manufacturing and FSW [323].
Fig. 31.  Microstructure of (a) mild steel deposit on mild steel substrate in Type 1 FSAM [321], (b) stainless steel friction surfaced on mild steel in Type1 FSAM multitrack multilayer surfacing [322], and (c) Partial macrostructure of Type 2 FSAM build of Mg alloy [323].
Fig. 32.  Macro and microstructures of FSF products (a) Interlocked Cu-wire between superplastic Zn-22Al plates [340], (b) Joining of Al 6014/Mild steel [334], and (c) Fabrication of Cu-W composite [329].
Fig. 33.  (a) Schematic of FSE-wire drawing process [352], (b) Schematic of FSE-tubing process [354].
Fig. 34.  (a) Schematic of FSE-joining process, (b) Schematic of double-sided FSE-joining process [345].
Fig. 35.  Microstructure of (a) Al-tube produced in FSE-tubing [356], and (b) Al wire produced in FSE-wire drawing [348].
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, Friction stir butt welding, GB Patent 9125978.8, International Patent PCT/GB92/02203, 1991.
[2] P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers.Int. Mater. Rev., 54(2009), pp. 49-93
[3] P.S. De, R.S. Mishra, Sci. Technol. Weld. Join., 16(2011), pp. 343-347
[4] O.S. Salih, H. Ou, W. Sun, D.G.McCartney, Mater.Des., 86(2015), pp. 61-71
[5] G. ?am, S. Mistikoglu, J. Mater. Eng. Perform., 23(2014), pp. 1936-1953
[6] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R, 50(2005), pp. 1-78
[7] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Prog. Mater. Sci., 53(2008), pp. 980-1023
[8] M.B. Uday, M.N.A.Fauzi, H. Zuhailawati, A.B. Ismail, Sci. Technol. Weld. Join., 15(2010), pp. 534-558
[9] G. ?am, Int. Mater. Rev., 56(2011), pp. 1-48
[10] T. DebRoy, H.K.D.H. Bhadeshia, Sci. Technol. Weld. Join., 15(2010), pp. 266-270
[11] T. Watanabe, H. Takayama, A. Yanagisawa, J. Mater. Process.Technol., 178(2006), pp. 342-349
[12] J. Defalco, Weld. J., 88(2009), pp. 44-48
[13] B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, A.M. Strauss, J. Manuf. Process., 16(2014), pp. 56-73
[14] H.K.D.H. Bhadeshia, T. DebRoy, Sci. Technol. Weld. Join., 14(2009), pp. 193-196
[15] W.M. Thomas, P.L. Threadgill, E.D. Nicholas, Sci. Technol. Weld. Join., 4(1999), pp. 365-372
[16] X.C. Liu, C.S. Wu, G.K. Padhy, Sci. Technol. Weld. Join., 20(2015), pp. 345-352
[17] G.K. Padhy, C.S. Wu, S. Gao, Sci. Technol. Weld. Join., 20(2015), pp. 631-649
[18] W.J. Arbegast, R.S. Mishra, M.W. Mahoney (Eds.), Friction Stir Welding and Processing, ASM International, New York (2007), pp. 273-308
[19] F. Nascimento, L. Quintino, Biul. Inst. Spaw., 58(2014), pp. 12-23
[20] M.K. Kulekci, U. Esme, B. Buldum, Int. J. Adv. Manuf. Technol., 85(2016), pp. 1687-1712
[21] P. Vila?a, C. Vidal, J. Gandra, Z. Ahmed (Ed.), Aluminium Alloys - New Trends in Fabrication and Applications, Intech Open Access Publisher (2012), pp. 159-197
[22] W.M. ThomasAn Investigation and Study into Friction Stir Welding of Ferrous-based Material, PhD Thesis, University of Bolton (2009)
[23] W.M. Thomas, D.G. Staines, I.M. Norris, R. de Frias, Weld. World, 47(2003), pp. 10-17
[24] R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Sci. Technol. Weld. Join., 16(2011), pp. 325-342
[25] Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, Can. Metall. Quart., 51(2012), pp. 250-261
[26] C.E. Rowe, W.M. ThomasAdvances in Tooling Materials for Friction Stir Welding, TWI and Cedar Metals Ltd. (2005), (Web link:
[27] A. Arora, M. Mehta, A. De, T. DebRoy, Int. J. Adv. Manuf. Technol., 61(2012), pp. 911-920
[28] T. DebRoy, A. De, H.K.D.H. Bhadeshia, V.D. Manvatkar, A. Arora, Proc. R. Soc. A, 468(2010), pp. 3552-3570
[29] A. Arora, A. De, T. DebRoy, Scr. Mater., 64(2011), pp. 9-12
[30] M. Mehta, A. De, T. DebRoy, Sci. Technol. Weld. Join., 19(2014), pp. 534-540
[31] V. Buchibabu, G.M. Reddy, A. De, J. Mater. Process.Technol., 241(2017), pp. 86-92
[32] R.S. Mishra, P.S. De, N. Kumar Friction Stir Welding and Processing, Springer International Publishing (2014), pp. 95-108
[33] S.K. Selvam, T.P. Pillai, Int. J. Chem. Technol. Res., 5(2013), pp. 1346-1358
[34] M.L. Rao, P.S. Babu, T. Rammohan, Y. Seenaaiah, AKGEC Int. J.Technol., 3(2012), pp. 15-18
[35] M. Mijajlovi?, D. Mil?i?, R. Kovacevic (Ed.), Welding Processes, Intech Publications (2012), pp. 247-274
[36] Y.B. Zhong, C.S. Wu, G.K. Padhy, J. Mater. Process.Technol., 239(2017), pp. 273-283
[37] G.Q. Chen, Q.Y. Shi, Y.J. Li, Y.J. Sun, Q.L. Dai, J.Y. Jia, Y.C. Zhu, J.J. Wu, Comp. Mater. Sci., 79(2013), pp. 540-546
[38] H. Su, C.S. Wu, A. Pittner, M. Rethmeier, Energy, 77(2014), pp. 720-731
[39] X.C. Liu, C.S. Wu, J. Mater. Process.Technol., 225(2015), pp. 32-44
[40] K.N. Krishnan, Mater. Sci. Eng. A, 327(2002), pp. 246-251
[41] R.W. Fonda, J.F. Bingert, Scr. Mater., 57(2007), pp. 1025-1052
[42] P.B. Prangnell, C.P. Heason, Acta Mater., 53(2005), pp. 3179-3192
[43] S. Mironov, Y.S. Sato, H. Kokawa, A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (Eds.), Electron Backscattered Diffraction in Materials Science, Springer Science, New York (2009), pp. 291-300
[44] S. Gourdet, F. Montheillet, Acta Mater., 51(2003), pp. 2685-2699
[45] R.W. Fonda, K.E. Knipling, Sci. Technol. Weld. Join., 16(2011), pp. 288-294
[46] R.W. Fonda, J.F. Bingert, K.J. Colligan, Scr. Mater., 51 (3) (2004), pp. 243-248
[47] J.Q. Su, T.W. Nelson, C.J. Sterling, Mater. Sci. Eng. A, 405(2005), pp. 277-286
[48] R.W. Fonda, K.E. Knipling, J.F. Bingert, Scr. Mater., 58(2008), pp. 343-348
[49] B. Heinz, B. Skrotzki, Metall. Mater. Trans. B, 33(2002), pp. 489-498
[50] T.R.McNelley, S.Swaminathan, J.Q. Su, Scr. Mater., 58(2008), pp. 349-354
[51] S. Mironov, K. Inagaki, Y.S. Sato, H. Kokawa, Metall. Mater. Trans. A, 46(2015), pp. 783-790
[52] G.K. Padhy, C.S. Wu, S. Gao, L. Shi, Mater. Des., 92(2016), pp. 710-723
[53] G.K. Padhy, C.S. Wu, S. Gao, Mater. Lett., 183(2016), pp. 34-39
[54] G.K. Padhy, C.S. Wu, S. Gao, Mater. Des., 116(2017), pp. 207-218
[55] S. Gao, C.S. Wu, G.K. Padhy, L. Shi, Mater. Des., 99(2016), pp. 135-144
[56] Y. Yue, Z. Li, S. Ji, Y. Huang, Z. Zhou, J. Mater. Sci.Technol., 32(2016), pp. 671-675
[57] Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, Y.J. Chao, Sci. Mater. A: Eng., 598(2014), pp. 312-318
[58] Z.H. Zhang, W.Y. Li, J. Shen, Y.J. Chao, J. Li, Y.E. Ma, Mater. Des., 50(2013), pp. 551-557
[59] B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, Z.Y. Ma, J. Mater. Sci.Technol., 33(2017), pp. 1009-1014
[60] C. Sharma, D.K. Dwivedi, P. Kumar, Mater. Des., 43(2013), pp. 134-143
[61] X.Q. Lv, C.S. Wu, G.K. Padhy, Mater. Lett., 203(2017), pp. 81-84
[62] G.M. Karthik, G.J. Ram, R.S. Kottada, Mater. Sci. Eng. A, 684(2017), pp. 186-190
[63] P.M. Krishna, D. Simhachalam, N. Ramanaiah, J. Appl. Sci., 12(2012), pp. 1053-1057
[64] W. Woo, L. Balogh, T. Ungár, H. Choo, Z. Feng, Mater. Sci. Eng. A, 498(2008), pp. 308-313
[65] D. Lohwasser, Z. ChenFriction Stir Welding: From Basics to Applications, (first ed.), Elsevier (2009)
[66] R. Rahbarpour, T. Azdast, H. Rahbarpour, S.M. Shishavan, Sci. Technol. Weld. Join., 19(2014), pp. 673-681
[67] M.M.Z.Ahmed, B.P. Wynne, W.M. Rainforth, P.L. Threadgill, Scr. Mater., 64(2011), pp. 45-48
[68] J.Q. Li, H.J. Liu, Mater. Des., 43(2013), pp. 299-306
[69] S.D. Ji, X.C. Meng, J.G. Liu, L.G. Zhang, S.S. Gao, Mater. Des., 62(2014), pp. 113-117
[70] D. Li, X. Yang, L. Cui, F. He, H. Shen, Mater. Des., 64(2014), pp. 251-260
[71] C.A. Maltin, L.J. Nolton, J.L. Scott, A.I. Toumpis, A.M. Galloway, Mater. Des., 64(2014), pp. 614-624
[72] D. Li, X. Yang, L. Cui, F. He, X. Zhang, J. Mater. Process.Technol., 222(2015), pp. 391-398
[73] P.S. Davies, B.P. Wynne, W.M. Rainforth, M.J. Thomas, P.L. Threadgill, Metall. Mater. Trans. A, 42(2011), pp. 2278-2289
[74] S.D. Ji, X.C. Meng, Z.W. Li, L. Ma, S.S. Gao, J. Mater. Eng.Perform., 25(2016), pp. 1228-1236
[75] J. MartinFriction Stir Welding, The Welding Institute, UKUK (),
[76] J.Q. Li, H.J. Liu, Mater. Des., 45(2013), pp. 148-154
[77] L. Shi, C.S. Wu, H.J. Liu, Int. J. Mach. Tool Manuf., 91(2015), pp. 1-11
[78] J.Q. Li, H.J. Liu, J. Mater. Sci.Technol., 31(2015), pp. 375-383
[79] L. Shi, C.S. Wu, H.J. Liu, Weld. World., 59(2015), pp. 629-638
[80] L. Shi, C.S. Wu, H.J. Liu, Int. J. Adv. Manuf. Technol., 74(2014), pp. 319-334
[81] L. Shi, C.S. Wu, H.J. Liu, J. Mater. Eng.Perform., 23(2014), pp. 2918-2929
[82] J.Q. Li, H.J. Liu, Int. J. Adv. Manuf. Technol., 76(2015), pp. 1469-1478
[83] H. Montazerolghaem, M. Badrossamay, A.F. Tehrani, S.Z. Rad, M.S. Esfahani, Mater. Manuf. Process., 30(2015), pp. 1109-1114
[84] H.J. Liu, J.Q. Li, W.J. Duan, Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, Japan 6-8 Nov (2013), pp. 25-32
[85] J. Hilgert, H.N. Schmidt, J.F.Dos Santos, N.Huber, J. Mater. Process. Technol., 211(2011), pp. 197-204
[86] W.M. Thomas, C.S. Wiesner, D.J. Marks, D.G. Staines, Sci. Technol. Weld. Join., 14(2009), pp. 247-253
[87] S.S. Chaudhury, K.S. Bhavsar, Int. J. Sci. Technol. Eng., 2(2016), pp. 630-633
[88] M.K. Sued, D. Pons, J. Lavroff, E.H. Wong, Mater. Des., 54(2014), pp. 632-643
[89] W.Y. Li, T. Fu, L. Hütsch, J. Hilgert, F.F. Wang, J.F.Dos Santos, N.Huber, Mater. Des., 64(2014), pp. 714-720
[90] H. Zhang, M. Wang, X. Zhang, G. Yang, Mater. Des., 65(2015), pp. 559-566
[91] L. Zhou, G.H. Li, C.L. Liu, J. Wang, Y.X. Huang, J.C. Feng, F.X. Meng, Sci. Technol. Weld. Join., 22(2016), pp. 438-445
[92] P.L. Threadgill, M.M. Ahmed, J.P. Martin, J.G. Perrett, B.P. Wynne, Mater. Sci. Forum, 638(2010), pp. 1179-1184
[93] K. Kumari, S.K. Pal, S.B. Singh, J. Mater. Process.Technol., 215(2015), pp. 132-141
[94] Y.X. Huang, L. Wan, S.X. Lv, Sci. Technol. Weld. Join., 18(2013), pp. 239-246
[95] L. Wan, Y.X. Huang, W.Q. Guo, J. Mater. Sci.Technol., 30(2014), pp. 1243-1250
[96] L. Wan, Y.X. Huang, Z.L. Lv, Mater. Des., 55(2014), pp. 197-203
[97] R.S. Mishra, M.W.Mahoney, Friction Stir Welding and Processing, ASM, International, Ohio(2007), pp. 235-272
[98] T.Y. Pan, SAE Technical Paper No.2007-01-1702, 2007.
[99] A.P. Gerlich, T.H. North, M. Schwartz (Ed.), Innovations in Materials Manufacturing, Fabrication, and Environmental Safety, CRC Press (2010)
[100] T. Iwashita, Method and apparatus for joining, US Patent 6601751 B2, 2003.
[101] C. Schilling J.F. dos Santos, Method and device for joining at least two adjoining work pieces by friction welding, US Patent 6,722,556, 2004.
[102] M. Kumagai, S. Tanaka, Method of spot joining for aluminum alloy, Japan Patent 2001-259863, 2001.
[103] C.D. Cox, B.T. Gibson, D.R.DeLapp, A.M. Strauss, G.E. Cook, J. Manuf. Process., 16(2014), pp. 241-247
[104] D. Bakavos, Y. Chen, L. Babout, P. Prangnell, Metall. Mater. Trans. A, 42(2011), pp. 1266-1282
[105] Y. Tozaki, Y. Uematsu, K. Tokaji, J. Mater. Process.Technol., 210(2010), pp. 844-851
[106] C. Schilling, A.V. Strombeck, J.F. dos Santos, N.V. Heesen, Proceedings of 2nd Symposium on Friction Stir Welding, May 26-28, Gothenburg, Sweden (2000)
[107] A. von Strombeck, C.Schilling, J.F. Dos Santos, Biul. Inst. Spaw., 45(2001), pp. 49-52, (in Polish)
[108] A.C. Addison, A.J. Robelou, Metz France, September 14(2004)
[109] B.M. Tweedy, C.A. Widener, J.D. Merry, J.M. Brown, D.A. Burford, SAE Technical Paper; 2008-01-1135.
[110] G. Buffa, L. Fratini, M.A. Piacentini, J. Mater. Process.Technol., 208(2008), pp. 309-317
[111] F. Hunt, H. Badarinarayan, K. Okamoto, SAE Technical Paper 2006-01-0970, SAE 2006 World Congress, April 3-6, Detroit, MI, USA (2006)
[112] K. Okamoto, F. Hunt, S. Hirano, SAE Technical Paper 2005-01-0730, SAE 2005 World Congress, April 11-14, Detroit, MI, USA (2005)
[113] K. Okamoto, F. Hunt, S. Hirano, SAE Technical Paper 2005-01-1254, SAE 2005 World Congress, April 11-14, Detroit, MI, USA (2005)
[114] Q. Yang, S. Mironov, Y.S. Sato, K. Okamoto, Mater. Sci. Eng. A, 527(2010), pp. 4389-4398
[115] P. Su, A. Gerlich, T.H. North, G.J. Bendzsak, Sci. Technol. Weld. Join., 11(2013), pp. 61-71
[116] R. Karthikeyan, V. Balasubramanian, Int. J. Adv. Manuf. Technol., 51(2010), pp. 173-183
[117] Y. Tozaki, Y. Uematsu, K. Tokaji, Fatigue Fract. Eng. Mater. Struct., 30(2007), pp. 143-148
[118] W. Yuan, R.S. Mishra, S. Webb, Y.L. Chen, B. Carlson, D.R. Herling, G.J. Grant, J. Mater. Process.Technol., 211(2011), pp. 972-977
[119] M.K. Bilici, A.I. Yükler, Mater. Des., 33(2012), pp. 145-152
[120] Y. Tozaki, Y. Uematsu, K. Tokaji, Int. J. Mach. Tool Manuf., 47(2007), pp. 2230-2236
[121] J.F. Hinrichs, C.B. Smith, B.F. Orsini, R.J. DeGeorge, B.J. Smale, P.C. Ruehl, Proceedings of the 5th International Symposium of Friction Stir Welding, September 14-16, Metz, Franc (2004)
[122] H. Badarinarayan, Q. Yang, S. Zhu, Int. J. Mach. Tool Manuf., 49(2009), pp. 142-148
[123] A. Gerlich, G. Avramovic-Cingara, T.H. North, Metall. Mater. Trans. A, 37(2006), pp. 2773-2786
[124] D.A. Wang, S.C. Lee, J. Mater. Process.Technol., 186(2007), pp. 291-297
[125] I. Stol, W. Thomas, P. Threadgill, Friction plunge riveting process, US Patent No.10/792, 409. 2004.
[126] R. Stevenson, P.C. Wang, Rivet with sliding cap for friction stir riveting, US Patent No. 7013768 B2, 2006.
[127] P.C. Wang, R. Stevenson, Friction stir rivet method of joining, US Patent No. 7862271, 2011.
[128] S.R. Banait, A.K. Raut, B.G. Nerkar, J. Tejani, Int. J. Res. Appl. Sci. Eng. Technol., 3(2015), pp. 192-196
[129] J. Li, S. Lazarevic, S. Miller, W.M. Wang, W. Cai, L. Xi, K. Wang, M. Banu, Proceedings of 9th International Workshop on Microfactories, October 5-8, 2014, Honolulu, USA(2017), pp. 195-201
[130] Y. Li, Z. Wei, Z. Wang, Y. Li, J. Manuf. Sci.Eng., 135(2013), p. 061007
[131] Z. Wang, Characterization of Friction-stir Riveting AA5754, Master Thesis, The University of Toledo (2014)
[132] Y. Hu, Friction-stir Riveting: Mechanical Testing of Friction Stir Riveting, Ph.D Thesis, The University of Toledo (2015)
[133] S.J. Durbin, Friction-Stir Riveting: An Innovative Process for Joining Difficult-to-Weld Materials, Master Thesis, The University of Toledo (2012)
[134] G. Ma, Friction-Stir Riveting Characteristics of Friction-stir Riveted Joints Master Thesis, The University of Toledo (2012)
[135] N.Z. Borba, Friction Riveting of Ti-6Al-4V and Pultruded Glass Fiber Reinforced Thermoset Polyester Hybrid Joints, Master Thesis, Universidade Federal de S?o Carlos (2015)
[136] J. Altmeyer, J.F. dos Santos, S.T. Amancio-Filho, Mater. Des., 60(2014), pp. 164-176
[137] S.T. Amancio-Filho, Friction riveting: development and analysis of a new joining technique for polymer-metal multi-material structures, Technical University Hamburg-Harburg / GKSS Research Center, Germany 2007, ISSN 0344-9629.
[138] S.T.Amancio Filho, M. Beyer, J.F. dos Santos, Method of connecting a metallic bolt to a plastic piece, US Patent, No. 7,575,149 B2, 2009.
[139] S.T.Amancio-Filho, Weld. World, 55(2011), pp. 13-24
[140] M.F. Borges, S.T.Amancio-Filho, J.F. dos Santos, T.R. Strohaecker, J.A. Mazzaferro, Comp. Mater. Sci., 54(2012), pp. 7-15
[141] L. Blaga, J.F.Dos Santos, R.Bancila, S.T. Amancio-Filho, Constr. Build. Mater., 80(2015), pp. 167-179
[142] J. Min, Y. Li, B.E. Carlson, S.J. Hu, J. Li, J. Lin, CIRP Ann. Manuf. Technol., 64(2015), pp. 13-16
[143] J. Min, J. Li, B.E. Carlson, Y. Li, J.F. Quinn, J. Lin, W. Wang, J. Manuf. Sci. Eng., 137 (2015), Article 051022
[144] J. Min, J. Li, Y. Li, B.E. Carlson, J. Lin, W.M. Wang, J. Mater. Process.Technol., 215(2015), pp. 20-29
[145] J. Min, Y. Li, J. Li, B.E. Carlson, J. Lin, Int. J. Adv. Manuf. Technol., 76(2015), pp. 1403-1410
[146] J. Min, J. Li, Y. Li, B.E. Carlson, J. Lin, J. Manuf. Sci.Eng., 138(2016), p. 054501
[147] D. Gao, U. Ersoy, R. Stevenson, P.C. Wang, J. Manuf. Sci.Eng., 131(2009), p. 061002
[148] C.Q. Zhang, X.J. Wang, B.Q. Li, Adv. Mater. Res.,183-185(2011), pp. 1616-1620
[149] C.Q. Zhang, B.Q. Li, X.J. Wang, Adv. Mater. Res.,228-229(2011), pp. 427-432
[150] W.M. Wang, H.A. Khan, J. Li, S.F. Miller, A.Z. Trimble, J. Manuf. Sci.Eng., 139(2017), p. 021005
[151] S. Lathabai, V. Tyagi, D. Ritchie, T. Kearney, B. Finnin, S. Christian, A. Sansome, G. White, SAE Int. J.Mater. Manuf., 4(2011), pp. 589-601
[152] A.Z. Trimble, B. Yammamoto, J. Li, J. Manuf. Sci. Eng., 138 (2016), Article 095001
[153] Y. Ma, M. Lou, Z. Yang, Y. Li, J. Manuf. Sci. Eng., 137 (2015), Article 054501
[154] Y. Ma, Y. Li, W. Hu, M. Lou, Z. Lin, J. Manuf. Sci. Eng., 138 (2016), Article 061007
[155] G. Han, M. Wang, Z. Liu, P.C. Wang, J. Manuf. Sci. Eng., 135 (2013), Article 031012
[156] H. Duan, G. Han, M. Wang, X. Zhang, Z. Liu, Mater. Des., 54(2014), pp. 414-424
[157] R. Justman, M. West, B. Jasthi, C. Widener, A. BoysenFriction Stir Lap Welding Aluminum to Steel Using Scribe Technology. Master Thesis, Dakota School of Mines, USA (2013),
[158] Y. Hovanski, G.J. Grant, S. Jana, K.F. Mattlin, Friction stir welding tool and process for welding dissimilar materials. US patent 8,434,661, 2013.
[159] E.E. Patterson, Microstructural Characterization of Friction Stir Welded Aluminum-steel Joints. Master Thesis, Washington State University, USA (2013)
[160] P. Upadhyay, Y. Hovanski, S. Jana, L.S. Fifield, J. Manuf. Sci. Eng., 139 (2017), Article 034501
[161] P. Upadhyay, Y. Hovanski, L.S. Fifield, K.L. Simmons.In: Friction Stir Welding and Processing VIII, 2015; 16 pp. 153-161.
[162] H.H. Cho, S.H. Kang, S.H. Kim, K.H. Oh, H.J. Kim, W.S. Chang, H.N. Han, Mater. Des., 34(2012), pp. 258-267
[163] S. Jana, Y. Hovanski, G.J. Grant, Metall. Mater. Trans. A, 41(2010), pp. 3173-3182
[164] S. Jana, Y. Hovanski, G.J. Grant, K. Mattlin, Friction Stir Welding and Processing VI, (2011), pp. 205-211
[165] E.E. Patterson, Y. Hovanski, D.P. Field, Metall. Mater. Trans. A, 47(2016), pp. 2815-2829
[166] T. Curtis, W. Christian, M. West, B. Jasthi, Y. Hovanski, B. Carlson, R. Szymanski, W. Bane, R.S. Mishra, M.W. Mahoney, Y. Sato, Y. Hovanski (Eds.), Friction Stir Welding and Processing VIII (2015), pp. 163-169
[167] Z.Y. Ma, Metall. Mater. Trans. A, 39(2008), pp. 642-658
[168] Z.Y. Ma, R.S. Mishra, Scr. Mater., 53(2005), pp. 75-80
[169] J.Q. Su, T.W. Nelson, C.J. Sterling, Scr. Mater., 52(2005), pp. 135-140
[170] Z.Y. Ma, S.R. Sharma, R.S. Mishra, Scr. Mater., 54(2006), pp. 1623-1626
[171] J.Q. Su, T.W. Nelson, C.J. Sterling, Phil. Mag., 86(2006), pp. 1-24
[172] C.I. Chang, X.H. Du, J.C. Huang, Scr. Mater., 57(2007), pp. 209-212
[173] E.A.El-Danaf, M.M. El-Rayes, M.S. Soliman, Mater. Des., 31(2010), pp. 1231-1236
[174] I. Charit, R.S. Mishra, Acta Mater., 53(2005), pp. 4211-4223
[175] A. Orozco-Caballero, M. álvarez-Leal, P. Hidalgo-Manrique, C.M.Cepeda-Jiménez, O.A. Ruano, F. Carre?o, Mater. Sci. Eng. A, 680(2017), pp. 329-337
[176] C.I. Chang, C.J. Lee, J.C. Huang, Scr. Mater., 51(2004), pp. 509-514
[177] C.I. Chang, X.H. Du, J.C. Huang, Scr. Mater., 59(2008), pp. 356-359
[178] Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams, Scr. Mater., 58(2008), pp. 361-366
[179] L. Karthikeyan, V.S. Senthilkumar, V. Balasubramanian, S. Natarajan, Mater. Des., 30(2009), pp. 2237-2242
[180] L. Karthikeyan, V.S. Senthilkumar, K.A. Padmanabhan, Mater. Des., 31(2010), pp. 761-771
[181] K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, Mater. Sci. Eng. A, 437(2006), pp. 274-280
[182] Z.Y. Ma, S.R. Sharma, R.S. Mishra, Mater. Sci. Eng. A, 433(2006), pp. 269-278
[183] A.H. Feng, Z.Y. Ma, Acta Mater., 57(2009), pp. 4248-4260
[184] A.H. Feng, Z.Y. Ma, Scr. Mater., 56(2007), pp. 397-400
[185] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Scr. Mater., 55(2006), pp. 1067-1070
[186] P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, M.W. Mahoney, Scr. Mater., 44(2001), pp. 61-66
[187] R.S. Mishra, Z.Y. Ma, I. Charit, Mater. Sci. Eng. A, 341(2003), pp. 307-310
[188] H.S. Grewal, H.S. Arora, H. Singh, A. Agrawal, Appl. Surf. Sci., 268(2013), pp. 547-555
[189] A. Kurt, I. Uygur, E. Cete, J. Mater. Process.Technol., 211(2011), pp. 313-317
[190] E.R. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear, 268(2010), pp. 1111-1121
[191] V. Sharma, U. Prakash, B.M. Kumar, J. Mater. Process.Technol., 224(2015), pp. 117-134
[192] H.S. Arora, H. Singh, B.K. Dhindaw, Int. J. Adv. Manuf. Technol., 61(2012), pp. 1043-1055
[193] S. Soleymani, A. Abdollah-Zadeh, S.A. Alidokht, Wear, 278(2012), pp. 41-47
[194] A. Shafiei-Zarghani, S.F.Kashani-Bozorg, A. Zarei-Hanzaki, Wear, 270(2011), pp. 403-412
[195] A. Shafiei-Zarghani, S.F.Kashani-Bozorg, A. Zarei-Hanzaki, Mater. Sci. Eng. A, 500(2009), pp. 84-91
[196] Y. Huang, T. Wang, W. Guo, L. Wan, S. Lv, Mater. Des., 59(2014), pp. 274-278
[197] Y. Mazaheri, F. Karimzadeh, M.H. Enayati, J. Mater. Process.Technol., 211(2011), pp. 1614-1619
[198] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng. A, 419(2006), pp. 344-348
[199] A. Ghasemi-Kahrizsangi, S.F.Kashani-Bozorg, Surf. Coat. Technol., 209(2012), pp. 15-22
[200] B. Zahmatkesh, M.H. Enayati, Mater. Sci. Eng. A, 527(2010), pp. 6734-6740
[201] D. Yadav, R. Bauri, Mater. Lett., 64(2010), pp. 664-667
[202] I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, P.W. Kao, Compos. Sci. Technol., 71(2011), pp. 693-698
[203] Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon, 50(2012), pp. 1843-1852
[204] D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, J. Alloy. Compd., 586(2014), pp. 368-374
[205] C.J. Hsu, P.W. Kao, N.J. Ho, Mater. Lett., 61(2007), pp. 1315-1318
[206] Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi, Composites A, 38(2007), pp. 2097-2101
[207] H. Izadi, A.P. Gerlich, Carbon, 50(2012), pp. 4744-4749
[208] S.A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, H. Assadi, Mater. Des., 32(2011), pp. 2727-2733
[209] A.H.Byung-Wook, C.H. Don-Hyun, K.I. Yong-Hwan, J.U. Seung-Boo, Trans. Nonferrous Metal. Soc. China, 22(2012), pp. s634-s638
[210] A. Dolatkhah, P. Golbabaei, M.B. Givi, F. Molaiekiya, Mater. Des., 37(2012), pp. 458-464
[211] M. Bahrami, K. Dehghani, M.K. Givi, Mater. Des., 53(2014), pp. 217-225
[212] M. Bahrami, M.K. Givi, K. Dehghani, N. Parvin, Mater. Des., 53(2014), pp. 519-527
[213] M. Zohoor, M.B. Givi, P. Salami, Mater. Des., 39(2012), pp. 358-365
[214] J. Qian, J. Li, J. Xiong, F. Zhang, X. Lin, Mater. Sci. Eng. A, 550(2012), pp. 279-285
[215] L. Ke, C. Huang, L. Xing, K. Huang, J. Alloy. Compd., 503(2010), pp. 494-499
[216] C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, C.P. Chang, Acta Mater., 54(2006), pp. 5241-5249
[217] R. Bauri, D. Yadav, G. Suhas, Mater. Sci. Eng. A, 528(2011), pp. 4732-4739
[218] Q. Zhang, B.L. Xiao, W.G. Wang, Z.Y. Ma, Acta Mater., 60(2012), pp. 7090-7103
[219] M. Sharifitabar, A. Sarani, S. Khorshahian, M.S. Afarani, Mater. Des., 32(2011), pp. 4164-4172
[220] M. Bahrami, M.K. Givi, K. Dehghani, N. Parvin, Mater. Des., 53(2014), pp. 519-527
[221] W. Wang, Q.Y. Shi, P. Liu, H.K. Li, T. Li, J. Mater. Process.Technol., 209(2009), pp. 2099-2103
[222] H. Izadi, A.P. Gerlich, Carbon, 50(2012), pp. 4744-4749
[223] M. Salehi, M. Saadatmand, J.A. Mohandesi, Trans. Nonferrous Metal. Soc. China, 22(2012), pp. 1055-1063
[224] M. Dixit, J.W. Newkirk, R.S. Mishra, Scr. Mater., 56(2007), pp. 541-544
[225] Q. Zhang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Mater. Lett., 65(2011), pp. 2070-2072
[226] Q. Zhang, B.L. Xiao, D. Wang, Z.Y. Ma, Mater. Chem. Phys., 130(2011), pp. 1109-1117
[227] N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, R.S. Mishra, J. Miner. Metal.Mater. Soc., 67(2015), pp. 1007-1113
[228] B.M. Darras, M.K. Khraisheh, F.K.Abu-Farha, M.A. Omar, J. Mater. Process. Technol., 191(2007), pp. 77-81
[229] L.S. Raju, A. Kumar, Defence Technol., 10(2014), pp. 375-383
[230] M. Azizieh, A.H. Kokabi, P. Abachi, Mater. Des., 32(2011), pp. 2034-2041
[231] G. Faraji, P. Asadi, Mater. Sci. Eng. A, 528(2011), pp. 2431-2440
[232] P. Asadi, G. Faraji, M.K. Besharati, Int. J. Adv. Manuf. Technol., 51(2010), pp. 247-260
[233] P. Asadi, R.A. Mahdavinejad, S. Tutunchilar, Mater. Sci. Eng. A, 528(2011), pp. 6469-6477
[234] C.J. Lee, J.C. Huang, P.J. Hsieh, Scr. Mater., 54(2006), pp. 1415-1420
[235] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng. A, 433(2006), pp. 50-54
[236] C.H. Chuang, J.C. Huang, P.J. Hsieh, Scr. Mater., 53(2005), pp. 1455-1460
[237] M. Barmouz, M.K. Givi, Composites A, 42(2011), pp. 1445-1453
[238] H.R. Akramifard, M. Shamanian, M. Sabbaghian, M. Esmailzadeh, Mater. Des., 54(2014), pp. 838-844
[239] M. Sabbaghian, M. Shamanian, H.R. Akramifard, M. Esmailzadeh, Ceram. Int., 40(2014), pp. 12969-12976
[240] M.N.Avettand-Fèno?l, A.Simar, R. Shabadi, R. Taillard, B. de Meester, Mater. Des., 60(2014), pp. 343-357
[241] C.A.Leon-Pati?o, E.A. Aguilar-Reyes, M. Braulio-Sánchez, G. Rodríguez-Ortiz, E. Bedolla-Becerril, Mater. Des., 54(2014), pp. 845-853
[242] M. Barmouz, P. Asadi, M.K. Givi, M. Taherishargh, Mater. Sci. Eng. A, 528(2011), pp. 1740-1749
[243] M. Barmouz, M.K. Givi, J. Seyfi, Mater. Charact., 62(2011), pp. 108-117
[244] A. Ghasemi-Kahrizsangi, S.F.Kashani-Bozorg, Surf. Coat. Technol., 209(2012), pp. 15-22
[245] S. Mironov, Y. Sato, H. Kokawa, Acta Mater., 56(2008), pp. 2602-2614
[246] B. Li, Y. Shen, L. Luo, W. Hu, Mater. Sci. Eng. A, 574(2013), pp. 75-85
[247] S. Mukherjee, A.K. Ghosh, Mater. Sci. Eng. A, 528(2011), pp. 3289-3294
[248] C.B. Fuller, M.W. Mahoney, Metall. Mater. Trans. A, 37(2006), pp. 3605-3615
[249] S.M. Mousavizade, F.M. Ghaini, M.J. Torkamany, J. Sabbaghzadeh, A. Abdollah-Zadeh, Scr. Mater., 60(2009), pp. 244-247
[250] J.R. Rule, J.M. Rodelas, J.C. Lippold, Weld. J., 92(2013), pp. 283s-290s
[251] R.S. Mishra, M.W. Mahoney, S.X.McFadden, N.A. Mara, A.K. Mukherjee, Scr. Mater., 42(1999), pp. 163-168
[252] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, Mater. Sci. Eng. A, 351(2003), pp. 148-153
[253] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Acta Mater., 50(2002), pp. 4419-4430
[254] L.B. Johannes, R.S. Mishra, Mater. Sci. Eng. A, 464(2007), pp. 255-260
[255] Z.Y. Ma, R.S. Mishra, F.C. Liu, Mater. Sci. Eng. A, 505(2009), pp. 70-78
[256] V.V. Patel, V. Badheka, A. Kumar, J. Mater. Process.Technol., 240(2017), pp. 68-76
[257] T.R.McNelley, S.Swaminathan, J.Q. Su, Scr. Mater., 58(2008), pp. 349-354
[258] R.S. Mishra, Integral channels in metal components and fabrication thereof. US Patent No. 6923362, 2005.
[259] R.S. Mishra, Integral channels in metal components and fabrication thereof. US Patent No. 7354657, 2008.
[260] N. Balasubramanian, Friction Stir Channeling: an Innovative Technique for Heat Exchanger Manufacturing. Ph.D Thesis, Missouri University of Science & Technology (2008)
[261] N. Balasubramanian, R.S. Mishra, K. Krishnamurthy, J. Mater. Process.Technol., 209(2009), pp. 3696-3704
[262] N. Balasubramanian, R.S. Mishra, K. Krishnamurthy, J. Manuf. Sci. Eng., 132 (2010), Article 054504
[263] N. Balasubramanian, R.S. Mishra, K. Krishnamurthy, J. Mater. Process.Technol., 211(2011), pp. 305-311
[264] P. Vilaca, C. Vidal, Ferramenta Modular Ajustavel e Respectivo Processo de Abertura deCanais Internos Continuos em Componentes Macicos (Modular adjustable tool and correspondent process for opening continuous internal channels in solid components); National patent pending No. 105628 T, 2011.
[265] C. Vidal, V. Infante, P. Vila?a, Key Eng. Mater., 488(2012), pp. 105-108
[266] C. Vidal, V. Infante, P. Vila?a, Mater. Sci. Forum, 730(2013), pp. 817-822
[267] C. Vidal, V. Infante, P. Vila?a, Proc. Eng., 66(2013), pp. 264-273
[268] C. Vidal, V. Infante, Y. Lage, P. Vila?a, Key Eng. Mater., 577(2014), pp. 37-40
[269] C. Vidal, V. Infante, Adv. Mater. Res., 891(2014), pp. 1494-1499
[270] C. Vidal, V. Infante, P. Vila?a, Int. J. Fatigue, 62(2014), pp. 85-92
[271] C. Vidal, V. Infante, P. Vila?a, Int. J. Fatigue, 62(2014), pp. 77-84
[272] C. Vidal, V. Infante, P. Vila?a, Eng. Fail. Anal., 56(2015), pp. 204-215
[273] M. Ferraz, Friction stir channeling-Industrial applications and prototype development. .
[274] M. Ferraz, Friction Stir Channeling Industrial Applications. Master Thesis, Universidade Técnica de Lisboa (2012)
[275] A. Rashidi, A. Mostafapour, S. Salahi, V. Rezazadeh, Appl. Mech. Mater., 302(2013), pp. 365-370
[276] A. Rashidi, A. Mostafapour, V. Rezazadeh, S. Salahi, Appl. Mech. Mater., 302(2013), pp. 371-376
[277] A. Rashidi, A. Mostafapour, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. (2015) 0954405415598943. 10.1177/0954405415598943.
[278] A. Rashidi, A. Mostafapour, Int. J. Adv. Manuf. Technol., 80(2015), pp. 1087-1096
[279] A. Rashidi, A. Mostafapour, Int. J. Mater. Form., 9(2016), pp. 1-8
[280] A.W. Batchelor, S. Jana, C.P. Koh, C.S. Tan, J. Mater. Process.Technol., 57(1996), pp. 172-181
[281] J. Gandra, H. Krohn, R.M. Miranda, P. Vila?a, L. Quintino, J.F. dos Santos, J.Mater. Process. Technol., 214(2014), pp. 1062-1093
[282] J. Gandra, D. Pereira, R.M. Miranda, P. Vila?a, Proc. CIRP, 7(2013), pp. 341-346
[283] X.M. Liu, Z.D. Zou, Y.H. Zhang, S.Y. Qu, X.H. Wang, Surf. Coat. Technol., 202(2008), pp. 1889-1894
[284] V.I. Vitanov, N. Javaid, Surf. Coat. Technol., 204(2010), pp. 2624-2631
[285] E.D. Nicholas, Weld. J., 65(1986), pp. 17-27
[286] E.D. Nicholas, D. Olson, T. Siewert, S. Liu, G. Edwards (Eds.), ASM Handbook-Welding Brazing and Soldering, ASM, International, Ohio(1993), pp. 321-323
[287] G.M. Bedford, V.I. Vitanov, I.I. Voutchkov, Surf. Coat. Technol., 141(2001), pp. 34-39
[288] H. Sakihama, H. Tokisue, K. Katoh, Mater. Trans., 44(2003), pp. 2688-2694
[289] H.K. Rafi, G.J. Ram, G. Phanikumar, K.P. Rao, Surf. Coat. Technol., 205(2010), pp. 232-242
[290] H.K. Rafi, G.J. Ram, G. Phanikumar, K.P. Rao, Proceedings of the World Congress on Engineering, London (2010), (Vol. 2)
[291] K. Fukakusa, Weld. Int., 10(1996), pp. 524-529
[292] J. Gandra, R.M. Miranda, P. Vila?a, J. Mater. Process.Technol., 212(2012), pp. 1676-1686
[293] H.K. Rafi, G. Phanikumar, K.P. Rao, Metall. Mater. Trans. A, 42(2011), pp. 937-939
[294] H.K. Rafi, G.J. Ram, G. Phanikumar, K.P. Rao, Mater. Des., 32(2011), pp. 82-87
[295] T. Shinoda, J.Q. Li, Y. Katoh, T. Yashiro, Surf. Eng., 14(1998), pp. 211-216
[296] M.L.Kramer de Macedo, G.A. Pinheiro, J.F. dos Santos, T.R. Strohaecker, Weld. Int., 24(2010), pp. 422-431
[297] A.M. KalkenFriction Surfacing of Stainless Steel on Mild Steel with a Robot. Master Thesis, Delft University of Technology (2001)
[298] V.I. Vitanov, I.I. Voutchkov, J. Mater. Process.Technol., 159(2005), pp. 27-32
[299] H. Tokisue, K. Katoh, T. Asahina, T. Usiyama, Mater. Trans., 47(2006), pp. 874-882
[300] V.I. Vitanov, I.I. Voutchkov, G.M. Bedford, J. Mater. Process.Technol., 107(2000), pp. 236-242
[301] U. Suhuddin, S. Mironov, H. Krohn, M. Beyer, J.F.Dos Santos, Metall. Mater. Trans. A, 43(2012), pp. 5224-5231
[302] I. Voutchkov, B. Jaworski, V.I. Vitanov, G.M. Bedford, Surf. Coat. Technol., 141(2001), pp. 26-33
[303] M. Chandrasekaran, A.W. Batchelor, S. Jana, J. Mater. Process.Technol., 72(1997), pp. 446-452
[304] K.P. Rao, A.V. Sreenu, H.K. Rafi, M.N. Libin, K. Balasubramaniam, J. Mater. Process.Technol., 212(2012), pp. 402-407
[305] A.A. van der Stelt, Friction Surface Cladding: Development of a Solid State Cladding Process, Ph.D Thesis, University of Twente, The Netherlands (2014)
[306] S. Liu, Friction Surface Cladding of AA1050 onto AA2024: Parameter Study and Process Window Development, Ph.D. Thesis, Universiteit Twente (2016), (Thesis&)
[307] A.A. van der Stelt, T.C. Bor, H.J. Geijselaers, R. Akkerman, A.H. van den Boogaard, Key Eng. Mater., 554(2013), pp. 1014-1021
[308] S. Liu, T.C. Bor, A.A. van der Stelt, H.J. Geijselaers, C. Kwakernaak, A.M. Kooijman, J.M. Mol, R. Akkerman, A.H. van den Boogaard, J. Mater. Process. Technol., 229(2016), pp. 769-784
[309] S. Liu, T.C. Bor, H.J. Geijselaers, R. Akkerman.Parameter Study for Friction Surface Cladding of AA1050 on AA2024-T351. .
[310] S.J. Liu, T.C. Bor, H.J. Geijselaers, R. Akkerman, FSWP International Conference, October 1-2 (2015)
[311] M.V. Kumar, S. Satish, Proc. of NCRIET-2015 & Indian J. Scient. Res. 12(2015) 217-220.
[312] Local cladding of advance aluminium alloys employing friction stir welding. .
[313] D. Christoulis, (Local) Alloying and Cladding of Advanced Aluminium Alloys Employing Friction Stir Welding. .
[314] D. Lohwasser, Z. Chen (Eds.), Friction Stir Welding: From Basics to Applications, Elsevier (2009)
[315] M. Gruppelaar, Friction stir welding technology for new cladding solutions in buildings. .
[316] Z. Shen, Y. Chen, M. Haghshenas, T. Nguyen, J. Galloway, A.P. Gerlich, Mater. Charact., 104(2015), pp. 1-9
[317] J.J. Dilip, G.D.Janaki Ram, B.E. Stucker, Int. J. Rapid Manuf., 3(2012), pp. 56-69
[318] D. White, Object consolidation employing friction joining: US Patent, No. 6,457,629.2002-10-1.
[319] J.A. Baumann, The Boeing Company, 2012.
[320] P.H. Lequeu, R. Muzzolini, J.C. Ehrstrom, F. Bron, R. Maziarz, High Performance Friction Stir Welded Structures Using Advanced Alloys (Powerpoint Presentation), Aeromat Conference, Seattle (2006)
[321] J.J. Dilip, H.K. Rafi, G.J. Ram, Trans. Indian Inst. Metal., 64(2011), pp. 27-30
[322] J.J. Dilip, S. Babu, S.V. Rajan, K.H. Rafi, G.J. Ram, B.E. Stucker, Mater. Manuf. Process., 28(2013), pp. 189-194
[323] S. Palanivel, P. Nelaturu, B. Glass, R.S. Mishra, Mater. Des., 65(2015), pp. 934-952
[324] R.S. Forrest, D.J. Waldron, Stir forming apparatus. US Patent, No. 7,971,463, 2011.
[325] T. Iwashita, Method and apparatus for joining. US Patent, No. 6,601,751, 2003.
[326] R.S. Forrest, D.J. Waldron, Stir forming apparatus and method. US Patent, No. 7,448,528, 2008.
[327] M.W. Mahoney, W.H. Bingel, Thick-section metal forming via friction stir processing, US Patent, No. 6,866,180. 2005.
[328] K.N. Balakrishnan, H.T. Kang, P.K. Mallick, SAE Technical Paper No.2007-01-1701, 2007.
[329] Y. Ahuja, R. Ibrahim, A. Paradowska, D. Riley, J. Mater. Process.Technol., 217(2015), pp. 222-231
[330] T. Nishihara, Mater. Sci. Forum, 426(2003), pp. 2971-2978
[331] T. Nishihara, A. Ito, Weld. World, 49(2005), pp. 22-26
[332] S. Lazarevic, Experimental and Metallurgical Analysis of Friction Stir Forming Process, Master Thesis, University of Hawaii (2012)
[333] S. Lazarevic, S.F. Miller, J. Li, B.E. Carlson, J. Manuf. Process., 15(2013), pp. 616-624
[334] S. Lazarevic, K.A. Ogata, S.F. Miller, G.H. Kruger, B.E. Carlson, J. Manuf. Sci.Eng., 137(2015), p. 051018
[335] K.A. Ogata, Material Analysis of Friction Stir Forming and Friction Stir Deposition. Master Thesis, University of Hawaii at Manoa (2013)
[336] K. Liu, Feasibility Study on Dissimilar Materials Joint Made by Friction Stir Forming, Master Thesis, University of Hawaii (2014)
[337] J. Li, S. Lazarevic, S. Miller, W.M. Wang, W. Cai, L. Xi, K. Wang, M. Banu, 9th International Workshop on Microfactories, October 5-8, 2014, Honolulu, USA(2017), pp. 195-201
[338] S.F. Miller, Manuf. Lett., 1(2013), pp. 21-24
[339] K. Yamamura, K. Torikai, T. Nishinara, Fric. Stir Weld. Proc, VI(2011), pp. 281-288
[340] H.M. Tabatabaei, T. Nishihara, Weld. World, 2016 (2016), pp. 1-9, 10.1007/s40194-016-0406-9
[341] M. Otsu, M. Yasunaga, M. Matsuda, K. Takashima, Proc. Eng., 81(2014), pp. 2318-2323
[342] M. Otsu, H. Matsuo, M. Matsuda, K. Takashima, J. Japan, Soc. Technol. Plast., 52(2011), pp. 710-714
[343] W.M. Thomas, E.D. Nicholas, S.B. Jones, Friction extrusion, metal working, US Patent, No. 5262123, 1993.
[344] W.T. Evans, B.T. Gibson, J.T. Reynolds, A.M. Strauss, G.E. Cook, Manuf. Lett., 5(2015), pp. 25-28
[345] W.T. Evans, C. Cox, B.T. Gibson, A.M. Strauss, G.E. Cook, J. Manuf. Process., 23(2016), pp. 115-121
[346] W. Tang, A.P. Reynolds, J. Mater. Process.Technol., 210(2010), pp. 2231-2237
[347] M. Abdollahi, R.A. Behnagh, J. Ghasemi, M.K. Givi, Proceedings of Iran International Aluminum Conference, 25-26, Tehran, Iran (2014)
[348] R.A. Behnagh, R. Mahdavinejad, A. Yavari, M. Abdollahi, M. Narvan, Metall. Mater. Trans. B, 45(2014), pp. 1484-1489
[349] H. Zhang, X. Zhao, X. Deng, M.A. Sutton, A.P. Reynolds, S.R.cNeill, X.Ke, MInt. J. Mech. Sci., 85(2014), pp. 130-141
[350] M. Sharifzadeh, M.A. Ansari, M. Narvan, R.A. Behnagh, A. Araee, M.K. Givi, Trans. Nonferrous Metal. Soc. China, 25(2015), pp. 1847-1855
[351] H. Zhang, X. Li, W. Tang, X. Deng, A.P. Reynolds, M.A. Sutton, J. Mater. Process.Technol., 221(2015), pp. 21-30
[352] M.A. Ansari, R.A. Behnagh, M. Narvan, E.S. Naeini, M.K. Givi, H. Ding, Trans. Indian Inst. Metal., 69(2016), pp. 1351-1357
[353] R.A. Behnagh, N. Shen, M.A. Ansari, M. Narvan, M.K. Givi, H. Ding, J. Manuf. Sci. Eng., 138 (2016), Article 041008
[354] F. Abu-Farha, Extruded Tubing via Friction Stir Forming. U.S. Provisional Patent Application, No. 61/547148, 2011.
[355] F. Abu-Farha, Scr. Mater., 66(2012), pp. 615-618
[356] F. Abu-Farha, Proceedings of the ASME2012 International Manufacturing Science and Engineering Conference, June 4-8, Notre Dame, Indiana, USA(2012), pp. 199-207
[357] J.L. Milner, F. Abu-Farha, Proceedings of the ASME2014 International Manufacturing Science and Engineering Conference, June 9-13, Detroit, Michigan, USA (2014)
[358] M.S. Khorrami, M. Movahedi, Mater. Des., 65(2015), pp. 74-79
[359] E.D. Nicholas, Weld. World, 47(2003), pp. 2-9
[1] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[2] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[3] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[4] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[5] Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding[J]. 材料科学与技术, 2019, 35(7): 1261-1269.
[6] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[7] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method[J]. 材料科学与技术, 2019, 35(7): 1412-1421.
[8] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. 材料科学与技术, 2019, 35(6): 972-981.
[9] Wen Zhang, Lili Tan, Dingrui Ni, Junxiu Chen, Ying-Chao Zhao, Long Liu, Cijun Shuai, Ke Yang, Andrej Atrens, Ming-Chun Zhao. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy[J]. 材料科学与技术, 2019, 35(5): 777-783.
[10] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[11] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites[J]. 材料科学与技术, 2019, 35(5): 824-832.
[12] M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel[J]. 材料科学与技术, 2019, 35(4): 491-498.
[13] Gonçalo L. Sorger, J.P. Oliveira, Patrick L. Inácio, Norbert Enzinger, Pedro Vilaça, R.M. Miranda, Telmo G. Santos. Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials[J]. 材料科学与技术, 2019, 35(3): 360-368.
[14] Zhongwei Ma, Yanye Jin, Shude Ji, Xiangchen Meng, Lin Ma, Qinghua Li. A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding[J]. 材料科学与技术, 2019, 35(1): 94-99.
[15] Chao Zhang, Lei Cui, Yongchang Liu, Chenxi Liu, Huijun Li. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel[J]. 材料科学与技术, 2018, 34(5): 756-766.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.