Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 112-118    DOI: 10.1016/j.jmst.2017.02.008
Orginal Article Current Issue | Archive | Adv Search |
Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding
C.Y. Liuab, B. Qub, P. Xuea, Z.Y. Maa*(), K. Luoc, M.Z. Mad, R.P. Liud
a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
b Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China;
c Guangxi Key Laboratory of Universities for Clean Metallurgy and Comprehensive Utilization of Nonferrous Metal Resources, Guilin University of Technology, Guilin 541004, China
d State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, the ultrafine grained (UFG) 6061 Al alloys fabricated by cold rolling were friction stir welded (FSW) with different rotation rates under both air cooling and rapid cooling in water. Low-heat-input parameters of 400 rpm rotation rate in water (400-Water) could effectively inhibit the coarsening of recrystallized grains, reduce the precipitation rate, and retain more dislocations of the UFG 6061 Al parent metal. 400-Water joint showed high lowest-hardness value, narrow low-hardness zone, and high tensile strength, attributing to the effect of dislocation, grain boundary, solid-solution, and precipitation hardening. This work provides an effective strategy to fabricate large-sized bulk UFG Al alloy by cold rolling with large deformation and low-heat-input FSW.

Key words:  Aluminum alloys      Ultrafine grained material      Friction stir welding      Mechanical properties     
Received:  11 September 2016     
Corresponding Authors:  Ma Z.Y.     E-mail:  zyma@imr.ac.cn

Cite this article: 

C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu. Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding. J. Mater. Sci. Technol., 2018, 34(1): 112-118.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.02.008     OR     https://www.jmst.org/EN/Y2018/V34/I1/112

Fig. 1.  (a) Schematic illustration of the low-heat-input friction stir welding process; and (b) dimension and location of the tensile specimen.
Fig. 2.  TEM image of UFG 6061 Al alloy.
Fig. 3.  Stress-strain curve of UFG 6061 Al alloy.
Fig. 4.  Hardness profiles in cross-sections of FSW UFG 6061 Al joints at various parameters.
Fig. 5.  TEM images of (a) and (b) SZ and (c) and (d) HAZ of 800-Air.
Fig. 6.  TEM images of (a, b) SZ and (c, d) HAZ of 800-Water.
Fig. 7.  TEM images of (a, b) SZ and (c, d) HAZ of 400-Water. Arrow in (d) denotes the precipitate.
Fig. 8.  Stress-strain curves of various FSW samples.
Fig. 9.  (a) Fracture locations after the tensile test of various FSW samples; fracture surfaces after the tensile test of various FSW samples: (b) 800-Air, (c) 800-Water, and (d) 400-Water.
[1] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Adv. Mater. 18(2006)2280-2823.
[2] I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Mater. Sci. Eng. A 560 (2013) 1-24.
[3] X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z.Valiev, Acta Mater. 98(2015) 355-366.
[4] Z.Y. Ma, F.C. Liu, R.S. Mishra, Acta Mater. 58(2010) 4693-4704.
[5] Z.Y. Ma, Metall. Mater. Trans. 39(2008) 642-658.
[6] F.C. Liu, Z.Y. Ma, F.C. Zhang, J. Mater. Sci.Technol. 28(2012) 1025-1030.
[7] M. Zha, Y.J. Li, R.H. Mathiesen, R. Bj?ge, H.J. Roven, Mater. Sci. Eng. A 586(2013) 374-381.
[8] X.X. Huang, Scripta Mater. 60(2009) 1078-1082.
[9] W.M. Thomas, E.D., Nicholas, J.C., Needham, M.G., Murch, P., Templesmith, C.J.,Dawes, G.B. Patent, No. 9125978, 1991, 8.
[10] R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
[11] R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, Z.Y. Ma, J. Mater. Sci.Technol. 32(2016)76-88.
[12] D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, J. Mater. Sci.Technol. 30(2014) 54-60.
[13] P. Xue, B.L. Xiao, Q. Zhang, Z.Y. Ma, Scripta Mater. 64(2011) 1051-1054.
[14] D. Wang, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin. Engl. Lett. 27(2014)816-824.
[15] A.H. Feng, D.L. Chen, Z.Y. Ma, W.Y. Ma, R.J. Song, Acta Metall. Sin. Engl. Lett. 27(2014) 723-729.
[16] Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, Y.J. Chao, Acta Mater. 92(2015) 117-125.
[17] F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, J.F. dos Santos, Mater.Des. 86(2015)933-940.
[18] Z.H. Zhang, W.Y. Li, J.L. Li, Y.J. Chao, A. Vairis, Mater. Charact. 107(2015)112-118.
[19] Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Mater. Sci. Eng. A 354 (2003) 298-305.
[20] Y.S. Sato, Y. Kurihara, S.H.C.Park, H. Kokawa, N.Tsuji, Scripta Mater. 50(2004)57-60.
[21] I. Topic, H.W. H?el, M. G?n, Mater. Sci. Eng. A 503 (2009) 163-166.
[22] Y.F. Sun, H. Fujii, Y. Takada, N. Tsuji, K. Nakata, K. Nogi, Mater. Sci. Eng. A 527(2009) 317-321.
[23] M. SarkariKhorrami, M. Kazeminezhad, A.H. Kokabi, Mater. Des. 40(2012)364-372.
[24] M. Lipi′nska, L. Olejnik, A. Pietras, A. Rosochowski, P. Bazarnik, J. Goli′nski, T.Brynk, M. Lewandowsk, Mater. Des. 88(2015) 22-31.
[25] M. Shamanian, M. Mohammadnezhad, J. Szpunar, J. Alloys Compd. 615(2014)651-656.
[26] I. Nikulin, S. Malopheyev, A. Kipelova, R. Kaibyshev, Mater. Lett. 66(2012)311-313.
[27] S. Malopheyev, S. Mironov, V. Kulitskiy, R. Kaibyshev, Mater. Sci. Eng. A 624(2015) 132-139.
[28] Z.L. Liu, H.T. Cui, S.D. Ji, M.Q. Xu, X.C. Meng, J. Mater. Sci.Technol. 32(2016)1372-1377.
[29] Z. Zhang, B.L. Xiao, Z.Y. Ma, Mater. Charact. 106(2015) 255-265.
[30] B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, Z.Y. Ma, J. Mater. Sci. Technol.doi: .
[31] X.C. He, F.S. Gu, A. Ball, Prog. Mater. Sci. 65(2014) 1-6.
[32] C.Y. Liu, B. Zhang, P.F. Yu, R. Jing, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. A 580(2013) 36-40.
[33] X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Acta Mater. 72(2014) 125-136.
[34] C.Y. Liu, L. Yu, M.Z. Ma, R.P. Liu, Z.Y. Ma, Philos. Mag. Lett. 95(2015)539-546.
[35] Z.H. Zhang, W.Y. Li, F.F. Wang, J.L. Li, Mater. Lett. 162(2016)94-96.
[36] Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, Y.J. Chao, Mater. Sci. Eng. A 598 (2014)312-318.
[37] X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z.Valiev, Acta Mater. 98(2015) 355-366.
[38] G. Sha, K. Tugcu, X.Z. Liao, P.W. Trimby, M.Y. Murashkin, R.Z. Valiev, S.P.Ringer, Acta Mater. 63(2014) 169-179.
[39] H.J. Liu, J.C. Hou, H. Guo, Mater. Des. 50(2013) 872-878.
[40] L. Trueba Jr., G. Heredia, D. Rybicki, L.B. Johannes, J. Mater. Process.Technol.219(2015) 271-277.
[1] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[2] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[3] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[4] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[5] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[6] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[7] Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium[J]. 材料科学与技术, 2020, 41(0): 139-148.
[8] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[9] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[10] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[11] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[12] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[13] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[14] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[15] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.