材料科学与技术 ›› 2020, Vol. 48 ›› Issue (0): 44-56.DOI: 10.1016/j.jmst.2019.12.020
收稿日期:2019-11-09
									
				
									
				
											接受日期:2019-12-24
									
				
											出版日期:2020-07-01
									
				
											发布日期:2020-07-13
									
			
        
               		Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang*(
)
			  
			
			
			
                
        
    
Received:2019-11-09
									
				
									
				
											Accepted:2019-12-24
									
				
											Online:2020-07-01
									
				
											Published:2020-07-13
									
			Contact:
					Zemin Wang   
							. [J]. 材料科学与技术, 2020, 48(0): 44-56.
Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting[J]. J. Mater. Sci. Technol., 2020, 48(0): 44-56.
| Elements | C | Si | Mn | Cr | Ni | Mo | Cu | V | Fe | 
|---|---|---|---|---|---|---|---|---|---|
| Mass fraction% | 0.42 | 1.79 | 0.84 | 0.99 | 1.68 | 0.40 | 0.10 | 0.09 | Bal. | 
Table 1 Chemical composition of 300M steel powders.
| Elements | C | Si | Mn | Cr | Ni | Mo | Cu | V | Fe | 
|---|---|---|---|---|---|---|---|---|---|
| Mass fraction% | 0.42 | 1.79 | 0.84 | 0.99 | 1.68 | 0.40 | 0.10 | 0.09 | Bal. | 
																																											Fig. 4. Relationship between the volumetric energy density and relative densities of as-deposited samples processed at various laser powers. Optical micrographs reveal lack of fusion voids in the samples with different relative densities.
| Laser power, P (W) | Layer thickness, δ (mm) | scanning velocity, v (mm/s) | hatch spacing, h (mm) | P/v (J·mm-1) | P/v (W·s0.5·mm-0.5) | 
|---|---|---|---|---|---|
| 300 | 0.04 | 800 | 0.10 | 0.375 | 10.6 | 
| 600 | 0.08 | 600 | 0.12 | 1.0 | 24.5 | 
| 800 | 0.08 | 800 | 0.14 | 1.0 | 28.3 | 
| 1000 | 0.12 | 600 | 0.16 | 1.67 | 40.8 | 
| 1900 | 0.16 | 1000 | 0.18 | 1.9 | 60.1 | 
Table 2 Parameters used to produce the cubic samples with relative density more than 99.9% by SLM.
| Laser power, P (W) | Layer thickness, δ (mm) | scanning velocity, v (mm/s) | hatch spacing, h (mm) | P/v (J·mm-1) | P/v (W·s0.5·mm-0.5) | 
|---|---|---|---|---|---|
| 300 | 0.04 | 800 | 0.10 | 0.375 | 10.6 | 
| 600 | 0.08 | 600 | 0.12 | 1.0 | 24.5 | 
| 800 | 0.08 | 800 | 0.14 | 1.0 | 28.3 | 
| 1000 | 0.12 | 600 | 0.16 | 1.67 | 40.8 | 
| 1900 | 0.16 | 1000 | 0.18 | 1.9 | 60.1 | 
																																											Fig. 6. Optical micrographs of XZ section of 300M steel bulk samples under various laser powers: (a) 300 W, (b) 600 W, (c) 800 W, (d) 1000 W, (e) 1900 W. The red two-way arrows measure the depth and half width of the molten pools.
																																											Fig. 8. XRD patterns of 300M steel powders and SLMed samples processed with various laser powers: (a) overview, (b) details inside the black dotted bordered rectangle of (a).
																																											Fig. 9. SEM images of the XZ sections of as-deposited 300M steel samples under various laser powers: (a) 300 W, (b) 600 W, (c) 800 W, (d) 1000 W, (e) 1900 W. Zone A and B represent the microstructure in the molten pool and heat-affected zone of as-deposited samples, respectively. Boundaries of columnar prior austenite grains (PAG) are marked by yellow dashed lines. Alpha ferrite (α-Fe) and granular carbides are indicated by the black and pink arrows, respectively.
																																											Fig. 10. Microstructural characteristics such as PAG sizes and the sizes of α-Fe in the molten pools (MP) and heat-affected zones (HAZ) of as-deposited samples at different laser powers.
																																											Fig. 11. Inverse pole figure color maps with high-angle (>10°) boundaries of as-deposited samples under various laser powers: (a) 300 W, (b) 600 W, (c) 800 W, (d) 1000 W, (e) 1900 W.
																																											Fig. 14. EBSD grain-boundary maps of 300M steel samples fabricated at different laser powers: (a) 300 W, (b) 600 W, (c) 800 W, (d) 1000 W, (e) 1900 W.
																																											Fig. 17. Fracture morphologies of SLM-processed 300M steel tensile test pieces under different laser powers: (a) 300 W, (b) 600 W, (c) 800 W, (d) 1000 W, (e) 1900 W.
																																											Fig. 18. Schematic diagram of microstructural evolution. Steps 1 to 4 describes successive variable processes of the microstructure of a bulk deposited by SLM.
| [1] | N. Wint, J. Leung, J.H. Sullivan, D.J. Penney, Y. Gao, Corros. Sci. 136 (2018) 366-373. | 
| [2] | Z.J. Xie, C.J. Shang, X.L. Wang, X.P. Ma, S.V. Subramanian, R.D.K. Misra, Mater. Sci. Eng. A 727 ( 2018) 200-207. | 
| [3] | J. Liu, Q. Guo, M. Yu, L. Songmei, Chinese J. Aeronaut. 27 (2014) 1327-1333. | 
| [4] | Y. Tomita, Mater. Sci. Technol. 7 (1991) 481-489. | 
| [5] | Y. Tomita, Int. Mater. Rev. 45 (2000) 27-37. | 
| [6] | X. He, X. Yang, G. Zhang, J. Li, H. Hu, Mater. Des. 40 (2012) 386-391. | 
| [7] | H.P. Zhang, C.X. Wang, X. Du, J. Harbin, Univ. Sci. Technol. 6 (2011) 16 (in Chinese). | 
| [8] | F. Liu, X. Lin, M. Song, H. Yang, Y. Zhang, L. Wang, W. Huang, J. Alloys. Compd. 621 (2015) 35-41. | 
| [9] | D. Tomus, T. Jarvis, X. Wu, J. Mei, P. Rometsch, E. Herny, J.-F. Rideau, S. Vaillant, Phys. Procedia 41 ( 2013) 823-827. | 
| [10] | T.H. Becker, Di. DImitrov, Rapid Prototyp. J. 22 (2016) 487-494. | 
| [11] | F. Li, Z. Wang, X. Zeng, Mater. Lett. 199 (2017) 79-83. | 
| [12] | J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Rapid Prototyp. J. 23 (2017) 217-226. | 
| [13] | J. Yang, H. Yu, H. Yang, F. Li, Z. Wang, X. Zeng, J. Alloys. Compd. 748 (2018) 281-290. | 
| [14] |  
											  D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Mater. Des. 152 (2018) 88-101. 
											 												 DOI URL  | 
										
| [15] | D. Kong, C. Dong, X. Ni, X. Li, Npj Mater. Degrad. 3 ( 2019). | 
| [16] | K. Wei, Z. Wang, X. Zeng, J. Mater, Process. Technol. 244 (2017) 73-85. | 
| [17] | H.H. Alsalla, C. Smith, L. Hao, Rapid Prototyp. J. 24 (2017) 9-17. | 
| [18] | Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang, J. Alloys. Compd. 735 (2018) 1414-1421. | 
| [19] | D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Electrochim. Acta 276 ( 2018) 293-303. | 
| [20] | D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J. Mater, Sci. Technol. 35 (2019) 1499-1507. | 
| [21] | W. Huang, J. Yang, H. Yang, G. Jing, Z. Wang, X. Zeng, Mater. Sci. Eng. A 750 ( 2019) 98-107. | 
| [22] | F. Liu, X. Lin, M. Song, H. Yang, Y. Zhang, L. Wang, W. Huang, J. Alloys. Compd. 621 (2015) 35-41. | 
| [23] | F. Liu, X. Lin, M. Song, H. Yang, K. Song, P. Guo, W. Huang, J. Alloys. Compd. 689 (2016) 225-232. | 
| [24] | S.P. Farrell, J. Deering, Mater. Perform. Charact. 7 (2018), 20170162. | 
| [25] | F. Liu, X. Lin, J. Shi, Y. Zhang, P. Bian, X. Li, Y. Hu, Addit. Manuf. 29 (2019), 100795. | 
| [26] | I. Gibson, D.W. Rosen, B. Stucker, Addit. Manuf. Technol. ( 2015) 19-42. | 
| [27] | D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60 (2012) 3849-3860. | 
| [28] | J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Des. 108 (2016) 308-318. | 
| [29] | Y. Bai, Y. Yang, D. Wang, M. Zhang, Mater. Sci. Eng. A 703 ( 2017) 116-123. | 
| [30] |  
											  E. Jelis, M. Hespos, S.L. Groeschler, R. Carpenter, J. Mater. Eng. Perform. 28 (2019) 693-700. 
											 												 DOI URL  | 
										
| [31] | E. Jelis, M.R. Hespos, N.M. Ravindra, J. Mater. Eng. Perform. 27 (2018) 63-71. | 
| [32] | J. Sander, J. Hufenbach, M. Bleckmann, L. Giebeler, H. Wendrock, S. Oswald, T. Gemming, J. Eckert, U. Kühn, J. Mater. Sci. 52 (2017) 4944-4956. | 
| [33] | J.J. Yan, D.L. Zheng, H.X. Li, X. Jia, J.F. Sun, Y.L. Li, M. Qian, M. Yan, J. Mater. Sci. 52 (2017) 12476-12485. | 
| [34] | K. Saeidi, D.L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, F. Akhtar, Addit. Manuf. 29 (2019), 100803. | 
| [35] | D. Buchbinder, W. Meiners, K. Wissenbach, R. Poprawe, J. Laser Appl. 27 (2015), S29205. | 
| [36] | M. Ma, Z. Wang, M. Gao, X. Zeng, J. Mater. Process. Technol. 215 (2015) 142-150. | 
| [37] |  
											  S. Bremen, W. Meiners, K. Wissenbach, R. Poprawe, Bhm Berg- Und Hüttenmännische Monatshefte 162 ( 2017) 179-187. 
											 												 DOI URL  | 
										
| [38] | M.L. Montero-sistiaga, M. Godino-martinez, K. Boschmans, J. Kruth, J. Van Humbeeck, K. Vanmeensel, Addit. Manuf. 23 (2018) 402-410. | 
| [39] | M.L. Montero-Sistiaga, S. Pourbabak, J. Van Humbeeck, D. Schryvers, K. Vanmeensel, Mater. Des. 165 ( 2019). | 
| [40] | S. Bremen, W. Meiners, K. Wissenbach, R. Poprawe, Bhm Berg- Und Hüttenmännische Monatshefte 162 ( 2017) 179-187. | 
| [41] | W.J. Sames, F. Medina, W.H. Peter, S.S. Babu, R.R. Dehoff, in: 8th Int. Symp. Superalloy 718 Deriv, 2014, pp. 409-423. | 
| [42] |  
											  T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, Sci. Rep. 6 (2016) 1-8. 
											 												 URL PMID  | 
										
| [43] |  
											  K. Darvish, Z.W. Chen, T. Pasang, Mater. Des. 112 (2016) 357-366. 
											 												 DOI URL  | 
										
| [44] | Q. Wang, S. Zhang, C. Zhang, J. Wang, M.B. Shahzad, H. Chen, J. Chen, Vacuum 161 ( 2019) 225-231. | 
| [45] |  
											  W. Chen, T. Voisin, Y. Zhang, J. Florien, C.M. Spadaccini, D.L. Mcdowell, T. Zhu, Y.M. Wang, Nat. Commun. 10 (2019) 1-12. 
											 												 DOI URL PMID  | 
										
| [46] | J.L. Youngblood, M. Raghavan, Metall. Trans. 8 (1977) 1439-1448. | 
| [47] | J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Des. 110 (2016) 558-570. | 
| [48] | H. Yang, J. Yang, W. Huang, Z. Wang, X. Zeng, Mater. Des. 156 (2018) 407-418. | 
| [49] | J. Liu, J. Li, X. Cheng, H. Wang, J. Mater. Sci. Technol. 34 (2018) 643-652. | 
| [50] | X. Li, Y.H. Tan, H.J. Willy, P. Wang, W. Lu, M. Cagirici, C.Y.A. Ong, T.S. Herng, J. Wei, J. Ding, Mater. Des. 178 (2019) 1-13. | 
| [51] | C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, T. Kuang, Mater. Des. 134 (2017) 23-34. | 
| [52] | J.J.S. Dilip, G.D.J. Ram, T.L. Starr, B. Stucker, Addit. Manuf. 13 (2017) 49-60. | 
| [53] | E. Jelis, M. Clemente, S. Kerwien, N.M. Ravindra, M.R. Hespos, Jom 67 ( 2015) 582-589. | 
| [54] | E. Blair, Malcolm, Thomas L. Stevens, ASM Int.( 1995). | 
| [55] | U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, J.M. Schoenung, Mater. Des. 113 (2017) 331-340. | 
| [56] | T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224. | 
| [57] |  
											  W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater, Process. Technol. 214 (2014) 2915-2925. 
											 												 DOI URL  | 
										
| No related articles found! | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||