材料科学与技术 ›› 2018, Vol. 34 ›› Issue (9): 1455-1466.DOI: 10.1016/j.jmst.2018.03.003
所属专题: Biomaterials 2018
• • 下一篇
收稿日期:
2017-12-19
修回日期:
2018-02-04
接受日期:
2018-02-05
出版日期:
2018-09-20
发布日期:
2018-09-25
Lian Guoa, Wei Wua, Yongfeng Zhoua, Fen Zhanga*(), Rongchang Zenga*(
), Jianmin Zengb
Received:
2017-12-19
Revised:
2018-02-04
Accepted:
2018-02-05
Online:
2018-09-20
Published:
2018-09-25
Contact:
Zhang Fen,Zeng Rongchang
. [J]. 材料科学与技术, 2018, 34(9): 1455-1466.
Lian Guo, Wei Wu, Yongfeng Zhou, Fen Zhang, Rongchang Zeng, Jianmin Zeng. Layered double hydroxide coatings on magnesium alloys: A review[J]. J. Mater. Sci. Technol., 2018, 34(9): 1455-1466.
Fig. 6. A schematic illustration of the apparatus used to electrochemically fabricate Li-Al LDH thin film on AZ31, with DC voltage being applied between steel pipe (the anode) and AZ31 sample (the cathode) in Li+/Al3+ aqueous electrolyte [91].
Fig. 8. Schematic illustration of the formation process of ZnAl-VOx LDH and ZnAl-Cl LDH films on Mg alloy. Step I: fabrication ZnAl-NO3 LDH films by a facile hydrothermal crystallization method. ZnAl-NO3 LDH display a layered structure built from stacking of brucite-type cationic slabs intercalated nitrate anions and water molecules. Step II: formation of ZnAl-VOx LDHs and ZnAl-Cl LDH films via anion exchange process [96].
Methods | Advantages | Disadvantages |
---|---|---|
In situ growth | ? Ease of operation ? Strong adhesion ? Controllable size | ? Substrate as only source ? Time consuming ? Highly temperature |
Co-precipitation | ? Controllable chemical compositions ? Wide scope of application ? Ease of operation | ? Time consuming ? Weak adhesion |
Electrochemical deposition | ? Purity of phase ? High deposition rate ? Simple equipment ? Complex shapes | ? Complex operation ? High cost |
Spinning coating | ? Ease of operation ? Very thin films | ? High cost ? Weak adhesion |
Anion-exchange | ? Ease of operation ? Diverse intercalation ions | ? Low crystallinity ? Time consuming |
Table 1 Advantages and disadvantages of the different synthetic methods.
Methods | Advantages | Disadvantages |
---|---|---|
In situ growth | ? Ease of operation ? Strong adhesion ? Controllable size | ? Substrate as only source ? Time consuming ? Highly temperature |
Co-precipitation | ? Controllable chemical compositions ? Wide scope of application ? Ease of operation | ? Time consuming ? Weak adhesion |
Electrochemical deposition | ? Purity of phase ? High deposition rate ? Simple equipment ? Complex shapes | ? Complex operation ? High cost |
Spinning coating | ? Ease of operation ? Very thin films | ? High cost ? Weak adhesion |
Anion-exchange | ? Ease of operation ? Diverse intercalation ions | ? Low crystallinity ? Time consuming |
Method | substrate | LDH coatings | Thickness (μm) | electrolyte | icorr (A/cm2) substrate | icorr (A/cm2) LDH coating | Ref. |
---|---|---|---|---|---|---|---|
one-step in situ growth method | AZ91D | MgAl-CO32- | 5-8 | 3.5?wt.% NaCl | 2?×?10-4 | 10-5 | [ |
one-step in situ growth method | Pure Mg | MgFe-CO32- | 2 | R-SBF | 4.23?×?10-4 | 1.4?×?10-5 | [ |
two-step in situ growth method | AZ31 | MgAl-CO32- | 1.04 | 0.1?M NaCl | 5.94?×?10-5 | 4.53?×?10-6 | [ |
hydrothermal treatment | AZ91D | MgAl-CO32- | 25 | 3.5?wt.% NaCl | 4.7?×?10-6 | 1.13?×?10-7 | [ |
hydrothermal treatment | JDBM | MgAl-CO32- | 2.6 | 3.5?wt.% NaCl | 1.56?×?10-5 | 3.63?×?10-7 | [ |
urea hydrolysis | AZ31 | MgAl-CO32- | 25-50 | 3.5?wt.% NaCl | 3.4?×?10-5 | 5.75?×?10-6 | [ |
urea hydrolysis | pure Mg | MgAl-CO32- | 3 | 3.5?wt.% NaCl | 10-4 | 10-6 | [ |
Steam coating | AZ31 | MgAl-CO32- | 80 | 5?wt.% NaCl | 1.20?×?10-4 | 1.35?×?10-10 | [ |
Steam coating | AZ31 | MgAl-CO32- | 28.13 | 0.86?M NaCl | 3.46?×?10-5 | 1.24?×?10-9 | [ |
hydrothermal crystallization method | AZ31D | MgAl-CO32- | 20 | 3.5?wt.% NaCl | 5.24?×?10-6 | 1.46?×?10-6 | [ |
co-precipitation and hydrothermal method | AZ31 | MgAl-CO32- | 7 | 3.5?wt.% NaCl | 3.04?×?10-5 | 6.52?×?10-8 | [ |
co-precipitation and hydrothermal method | AZ31 | MgAl-MoO42- | 17 | 3.5?wt.% NaCl | 3.17?×?10-5 | 1.60?×?10-7 | [ |
electrochemical deposition | AZ31 | LiAl-CO32- | ~0.82 | 0.1?M NaCl | 1.33?×?10-5 | 1.46?×?10-6 | [ |
electrochemical deposition | AZ91D | ZnAl-NO3- | 3 | 3.5?wt.% NaCl | 4.23?×?10-5 | 2.12?×?10-6 | [ |
Spinning coating | AZ31 | MgAl-CO32- | 1.1 | 3.5?wt.% NaCl | 1.94?×?10-4 | 4.91?×?10-6 | [ |
Anion-exchange | AZ91D | ZnAl-Cl- | ~4.7 | 3.5?wt.% NaCl | 6.42?×?10-4 | 2.52?×?10-6 | [ |
Anion-exchange | AZ91D | ZnAl-VOx- | ~5.2 | 3.5?wt.% NaCl | 6.42?×?10-4 | 2.21?×?10-6 | [ |
Table 2 Thickness and corrosion resistance of the different LDH coatings.
Method | substrate | LDH coatings | Thickness (μm) | electrolyte | icorr (A/cm2) substrate | icorr (A/cm2) LDH coating | Ref. |
---|---|---|---|---|---|---|---|
one-step in situ growth method | AZ91D | MgAl-CO32- | 5-8 | 3.5?wt.% NaCl | 2?×?10-4 | 10-5 | [ |
one-step in situ growth method | Pure Mg | MgFe-CO32- | 2 | R-SBF | 4.23?×?10-4 | 1.4?×?10-5 | [ |
two-step in situ growth method | AZ31 | MgAl-CO32- | 1.04 | 0.1?M NaCl | 5.94?×?10-5 | 4.53?×?10-6 | [ |
hydrothermal treatment | AZ91D | MgAl-CO32- | 25 | 3.5?wt.% NaCl | 4.7?×?10-6 | 1.13?×?10-7 | [ |
hydrothermal treatment | JDBM | MgAl-CO32- | 2.6 | 3.5?wt.% NaCl | 1.56?×?10-5 | 3.63?×?10-7 | [ |
urea hydrolysis | AZ31 | MgAl-CO32- | 25-50 | 3.5?wt.% NaCl | 3.4?×?10-5 | 5.75?×?10-6 | [ |
urea hydrolysis | pure Mg | MgAl-CO32- | 3 | 3.5?wt.% NaCl | 10-4 | 10-6 | [ |
Steam coating | AZ31 | MgAl-CO32- | 80 | 5?wt.% NaCl | 1.20?×?10-4 | 1.35?×?10-10 | [ |
Steam coating | AZ31 | MgAl-CO32- | 28.13 | 0.86?M NaCl | 3.46?×?10-5 | 1.24?×?10-9 | [ |
hydrothermal crystallization method | AZ31D | MgAl-CO32- | 20 | 3.5?wt.% NaCl | 5.24?×?10-6 | 1.46?×?10-6 | [ |
co-precipitation and hydrothermal method | AZ31 | MgAl-CO32- | 7 | 3.5?wt.% NaCl | 3.04?×?10-5 | 6.52?×?10-8 | [ |
co-precipitation and hydrothermal method | AZ31 | MgAl-MoO42- | 17 | 3.5?wt.% NaCl | 3.17?×?10-5 | 1.60?×?10-7 | [ |
electrochemical deposition | AZ31 | LiAl-CO32- | ~0.82 | 0.1?M NaCl | 1.33?×?10-5 | 1.46?×?10-6 | [ |
electrochemical deposition | AZ91D | ZnAl-NO3- | 3 | 3.5?wt.% NaCl | 4.23?×?10-5 | 2.12?×?10-6 | [ |
Spinning coating | AZ31 | MgAl-CO32- | 1.1 | 3.5?wt.% NaCl | 1.94?×?10-4 | 4.91?×?10-6 | [ |
Anion-exchange | AZ91D | ZnAl-Cl- | ~4.7 | 3.5?wt.% NaCl | 6.42?×?10-4 | 2.52?×?10-6 | [ |
Anion-exchange | AZ91D | ZnAl-VOx- | ~5.2 | 3.5?wt.% NaCl | 6.42?×?10-4 | 2.21?×?10-6 | [ |
Fig. 10. Schematic representation showing treatment process assisted by alternating electric field: (a-c) in 10?g/L Ce(NO3)3 solution and (d-f) in 30?g/L Ce(NO3)3 solution [104].
Fig. 12. SEM surface morphology images at low and higher magnifications of anodized and Mg-M LDHs, (a) and (b) anodized Mg alloy, (c) and (d) Mg-Fe LDHs, (e) and (f) Mg-Cr LDHs, (g) and (h) Mg-Al LDHs [123].
Coatings | Thickness (μm) | electrolyte | icorr (A/cm2) substrate | icorr (A/cm2) LDH | icorr (A/cm2) composite coatings | Ref. |
---|---|---|---|---|---|---|
PA/LDH/AZ31 | 0.965 | 3.5?wt.% NaCl | 5.94?×?10-5 | 4.53?×?10-6 | 7.6?×?10-7 | [ |
Ce(NO3)3/LDH/AZ91D | ~9.7 | 3.5?wt.% NaCl | - | 5.40?×?10-5 | 1.53?×?10-6 | [ |
PLA/LDH/AZ31 | 7.5 | 3.5?wt.% NaCl | 3.37?×?10-5 | 6.79?×?10-8 | 1.20?×?10-8 | [ |
LDH/PEO/AZ31 | 7 | 3.5?wt.% NaCl | 1.66?×?10-5 | 3.34?×?10-5 | 3.92?×?10-6 | [ |
SA/LDH/AZ91D | - | 3.5?wt.% NaCl | 8.8?×?10-3 | 1.1?×?10-3 | 2.6?×?10-5 | [ |
SA/LDH/AZ31 | 7.5 | 3.5?wt.% NaCl | 4.7?×?10-5 | 3.9?×?10-7 | 3.4?×?10-10 | [ |
PFOTES/LDH/AZ80 | 5 | 3.5?wt.% NaCl | 1.22?×?10-5 | 0.55?×?10-7 | 3.35?×?10-9 | [ |
Mg-Al LDH/anodic AZ31 | ~14 | 3.5?wt.% NaCl | 3.27?×?10-5 | 4.70?×?10-6 | 1.18?×?10-7 | [ |
Mg-Fe LDH/anodic AZ31 | ~14 | 3.5?wt.% NaCl | 3.27?×?10-5 | 4.70?×?10-6 | 1.09?×?10-6 | [ |
Mg-Cr LDH/anodic AZ31 | ~14 | 3.5?wt.% NaCl | 3.27?×?10-5 | 4.70?×?10-6 | 2.16?×?10-6 | [ |
LDH/anodic AZ31 | 1.9 | 3.5?wt.% NaCl | 1.23?×?10-5 | 2.85?×?10-6 | 3.5?×?10-7 | [ |
NO3- LDH/anodic AZ31 | 8 | 3.5?wt.% NaCl | 1.23?×?10-5 | 3.89?×?10-6 | 9.48?×?10-7 | [ |
VO3- LDH/anodic AZ31 | 8 | 3.5?wt.% NaCl | 1.23?×?10-5 | 3.89?×?10-6 | 2.48?×?10-7 | [ |
Table 3 Thickness and corrosion resistance of the composite coatings.
Coatings | Thickness (μm) | electrolyte | icorr (A/cm2) substrate | icorr (A/cm2) LDH | icorr (A/cm2) composite coatings | Ref. |
---|---|---|---|---|---|---|
PA/LDH/AZ31 | 0.965 | 3.5?wt.% NaCl | 5.94?×?10-5 | 4.53?×?10-6 | 7.6?×?10-7 | [ |
Ce(NO3)3/LDH/AZ91D | ~9.7 | 3.5?wt.% NaCl | - | 5.40?×?10-5 | 1.53?×?10-6 | [ |
PLA/LDH/AZ31 | 7.5 | 3.5?wt.% NaCl | 3.37?×?10-5 | 6.79?×?10-8 | 1.20?×?10-8 | [ |
LDH/PEO/AZ31 | 7 | 3.5?wt.% NaCl | 1.66?×?10-5 | 3.34?×?10-5 | 3.92?×?10-6 | [ |
SA/LDH/AZ91D | - | 3.5?wt.% NaCl | 8.8?×?10-3 | 1.1?×?10-3 | 2.6?×?10-5 | [ |
SA/LDH/AZ31 | 7.5 | 3.5?wt.% NaCl | 4.7?×?10-5 | 3.9?×?10-7 | 3.4?×?10-10 | [ |
PFOTES/LDH/AZ80 | 5 | 3.5?wt.% NaCl | 1.22?×?10-5 | 0.55?×?10-7 | 3.35?×?10-9 | [ |
Mg-Al LDH/anodic AZ31 | ~14 | 3.5?wt.% NaCl | 3.27?×?10-5 | 4.70?×?10-6 | 1.18?×?10-7 | [ |
Mg-Fe LDH/anodic AZ31 | ~14 | 3.5?wt.% NaCl | 3.27?×?10-5 | 4.70?×?10-6 | 1.09?×?10-6 | [ |
Mg-Cr LDH/anodic AZ31 | ~14 | 3.5?wt.% NaCl | 3.27?×?10-5 | 4.70?×?10-6 | 2.16?×?10-6 | [ |
LDH/anodic AZ31 | 1.9 | 3.5?wt.% NaCl | 1.23?×?10-5 | 2.85?×?10-6 | 3.5?×?10-7 | [ |
NO3- LDH/anodic AZ31 | 8 | 3.5?wt.% NaCl | 1.23?×?10-5 | 3.89?×?10-6 | 9.48?×?10-7 | [ |
VO3- LDH/anodic AZ31 | 8 | 3.5?wt.% NaCl | 1.23?×?10-5 | 3.89?×?10-6 | 2.48?×?10-7 | [ |
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||