[1] Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108-109(1-3): 73
[2] Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base supperalloys [J]. Oxid. Met., 1971, 3(5): 475
[3] Streiff R, N’Gandu Muamba J M, Boone D H. Surface morphology of diffusion aluminide coatings [J]. Thin Solid Films, 1984, 119(3): 291
[4] Mevrel R, Duret C, Pichoir R. Pack cementation processes [J]. Mater. Sci. Technol., 1986, 2(3): 201
[5] Kircher T A, Mcmordie B G, Mccarter A. Performance of a silicon-modified aluminide coating in high-temperature hot corrosion test coditions [J]. Surf. Coat. Technol., 1994, 68-69: 32
[6] Young S G, Deadmore D L. An experimental low-cost silicon aluminide high-temperature coating for super-alloys [J]. Thin Solid Films, 1980, 73(2): 373
[7] Grunling H W, Bauer R. The role of silicon in corrosion-resistant high-temperature coatings [J]. Thin Solid Films, 1982, 95(1): 3
[8] Meier G H, Pettit F S. High temperature corrosion of alumina-forming coatings for supperalloys [J]. Surf. Coat. Technol., 1989, 39-40(1-3): 76
[9] Tawancy H M. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49(1-3): 1
[10] Nicholls J R. Designing oxidation-resistant coatings [J]. JOM, 2000, 52(1): 28
[11] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 432
[12] 李铁藩. 金属的氧化与腐蚀 [M]. 北京: 化学工业出版社, 2003: 292
[13] 内尔·伯克斯, 杰拉德·迈耶, 弗雷德·佩蒂特著, 辛丽, 王文译. 金属高温氧化导论 [M]. 北京: 高等教育出版社, 2010: 248
[14] 朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料 [M]. 上海: 上海科学技术出版社, 1995. 1
[15] 王福会. 高温合金微晶涂层 [D]. 沈阳: 中国科学院金属腐蚀与防护研究所, 1992
[16] 楼翰一. 高温合金微晶涂层的发展 [J]. 吉林工学院学报, 1997, 18(3): 1
[17] 王福会, 楼翰一, 吴维 . 高温合金微晶涂层研究之进展 [J]. 真空科学与技术, 1994, 14(4): 287
[18] Lou H Y, Wang F H, Xia B J, et al. High-temperature oxidaton resistance of sputtered micro-grain supperalloy K38G [J]. Oxid. Met., 1992, 38(3-4): 299
[19] Wang F H. The effect of nanocrystallization on the selective oxidation and adhersion of Al2O3 scales [J]. Oxid. Met., 1997, 48(3-4): 215
[20] Lou H Y, Tang Y J, Sun X F, et al. Oxidation behavior of sputtered microcyrstalline coating of supperalloy K17F at high temperature [J]. Mater. Sci. Eng., 1996, A207(1): 121
[21] Wang F H, Yong D J. Effect of nanocrystallization on the corrosion resistance of K38G supperalloy in CO+CO2 atmospheres [J]. Oxid. Met., 1997, 48(5-6): 497
[22] Geng S J, Wang F H, Zhu S L, et al. Hot-corrosion resistance of a sputtered K38G nanocrystalline coating in molten sulfate at 900 ℃[J]. Oxid. Met., 2002, 57(5-6): 549
[23] Geng S J, Wang F H, Zhang S. Cross-sectional oxide distribution of cast IN738 and its sputtered coating at 1000 ℃ [J]. Surf. Coat. Technol., 2003, 167(2-3): 161
[24] Wang F H, Lou H Y. Oxidation behaviour and scale morphology of normal-grained Co30Cr5Al alloy and its sputtered microcrystalline coating [J]. Mater. Sci. Eng., 1990, A129: 279
[25] Suzuki A, Rae C M F. Secondary reaction zone formations in coated Ni-base single crystal superalloys [C]. USA: IOP Publishing, 2009: 1
[26] Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39(7)A: 1647
[27] Das D K, Gleeson B, Murphy K S, Ma S, et al. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings [J]. Mater. Sci. Technol., 2009, 25(2): 300
[28] Handoko L T, Siregar M R T. International Workshop on Advanced Material for New and Renewable Energy [M]. USA: American Insitute of Physics, 2009: 63
[29] Kawagishi K, Sato A, Harada H. A concept for the EQ coating system for nickel-Based superalloys [J]. JOM, 2008, 60(7): 31
[30] Sato A, Harada H, Kawagishi K. Development of a New Bond Coat“EQ Coating” System [J]. Metall. Mater. Trans., 2006, 37(3)A: 789
[31] Lee W Y, Stinton D P. Concept of Functionally graded materials for advanced thermal barrier coating applications [J]. J. Am. Ceram. Soc., 1996, 79(12): 3003
[32] Kim J H, Kim M C, Park C G. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique [J]. Surf. Coat. Technol., 2003, 168(2-3): 275
[33] Xiong H P, Kawasaki A, KanY S, et al. Experimental study on heat insulation performance of functionally graded metal/ceramic coatings and their fracture behavior at high surface temperatures [J]. Surf. Coat. Technol., 2005, 194(2-3): 203
[34] Hamatani H, Shimoda N, Kitaguchi S. Effect of the composition profile and density of LPPS sprayed functionally graded coating on the thermal shock resistance [J]. STAM, 2003, 4: 197
[35] Markworth A J, Ramesh K S, Parks W P. Modelling studies applied to functionally graded materials [J]. J. Mater. Sci., 1995, 30: 2183
[36] Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice [J]. Surf. Coat. Technol., 2002, 149(2-3): 236
[37] 关春红, 唐兆麟, 王福会等. 搪瓷涂层对Ti-24Al-14Nb-3V抗氧化及热腐蚀性能的影响 [J]. 材料研究学报, 2000, 14(增刊): 75
[38] Xiong Y M, Wang F H, Wu W T, et al Effect of enamel coating on corrosion of Ti60 alloy [J]. Mater. Sci. Forum, 2001, 369-372: 743
[39] Xiong Y M, Zhu S L, Wang F H. The oxidation behavior and mechanical performance of Ti60 alloy with enamel coating [J]. Surf. Coat. Technol., 2005, 190(2-3): 195
[40] Xiong Y M, Zhu S L, Wang F H. The oxidation behavior of TiAlNb intermetallics with coatings at 800 ℃ [J]. Surf. Coat. Technol., 2005, 197(2-3): 322
[41] 熊玉明. 高温钛合金用超细搪瓷涂层的研究 [D]. 沈阳: 中国科学院金属研究所, 2004
[42] 郑德有. 搪瓷涂层和氧化钛铝涂层高温腐蚀机理的研究 [D]. 沈阳: 中国科学院金属研究所, 2007
[43] Zheng D Y, Xiong Y M, Zhu S L, et al. Effect of enamel coating on long-term oxidation and hot corrosion behavior of Ti-24Al-17Nb-0.5Mo alloys [J]. Trans. Nonferrous Met. Soc. China, 2004, 14(增刊): 359
[44] Zheng D Y, Zhu S L, Wang F H. Oxidation and hot corrosion behavior of a novel enamel- Al2O3 composite coating on K38G suppetalloy [J]. Surf. Coat. Technol., 2006, 200(20-21): 5931
[45] Zheng D Y, Zhu S L, Wang F H. The influence of TiAlN and enamel coatings on the corrosion behavior of Ti6Al4V alloy in the presence of solid NaCl deposit and water vapor at 450 ℃ [J]. Surf. Coat. Technol., 2007, 201(12): 5859
[46] 陈明辉. 颗粒增强改善搪瓷涂层的抗热震性能机制研究 [D]. 沈阳: 中国科学院金属研究所, 2011
[47] Chen M H, Zhu S L, Shen M L, et al. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites [J]. Mater. Sci. Eng., 2011, A 528(3): 1360
[48] 陈明辉, 朱圣龙, 王福会. NiCrAlY颗粒添加改善搪瓷力学及热震性能研究 [C]. 云南昆明: 第七届海峡两岸材料腐蚀与防护研讨会, 2010
[49] Das S, Mukhopadhyay A K, Datta S, et al. Evaluation of microwave processed glass-ceramic coating on nimonic superalloy substrate [J]. Ceram. Int., 2010, 36(3): 1125
[50] Das S, Datta S, Basu D, et al. Hot corrosion of glass coating on nickel base superalloy [J]. Ceram. Int., 2008, 34(5): 1215
[51] Datta S, Das S. A new high temperature resistant glass-ceramic coating for gas turbine engine components [J]. Bull. Mater. Sci., 2005, 28(7): 689
[52] Sarkar S, Datta S, Das S, et al. Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings [J]. Surf. Coat. Technol. 2009, 203(24): 1797
[53] Dietrich M, Verlotski V, Vaβen R, et al. Metal-glass based composites for novel TBC-system [J]. Materialwiss. Werkstofftech., 2001, 32(8): 669
[54] Mack D E, Gross S M, Vaβen R, et al. Metal-glass based composites for application in TBC-systems [J]. J. Therm. Spray Technol., 2006, 15(4): 652
[55] Murakami H, Matsumura Y, Kasai K. Effect of Ir addition to Pt-based oxidation resistant coatings [C]. France: Les Embiez, 2012: 20
[56] Liu X, Huang L, Bao Z B, et al. Oxidation behavior of graded NiCrAlYRe coatings at 900, 1000 and 1100 ℃[J]. Oxid. Met., 2009, 71(3-4): 125
[57] Itoh Y, Saitoh M. Mechanical properties of overaluminized MCrAlY coatings at room temperature [J]. J. Eng. Gas Turb. Power, 2005, 127(4): 807
[58] Bao Z B, Wang Q M, Li W Z, et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy [J]. Corros. Sci., 2009, 51(4): 860
[59] Jiang S M, Li H Q, Ma J, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating. II: Oxidation and hot corrosion [J]. Corros. Sci., 2010, 52(7): 2316
[60] Ma J, Jiang S M, Li H Q, et al. Microstructure and oxidation behaviour of an AlSiY/NiCrAlYSi composite coating at 1150 ℃ [J].Corros. Sci., 2011, 53(4): 1417
[61] 鲁金涛. NiCrAlY 涂层热扩散制备方法及高温氧化和高温腐蚀行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011
[62] 郭鹤同, 张三元. 复合镀层 [M]. 天津: 天津大学出版社, 1991
[63] Foster J, Cameron B P. Effect of current density and agitation on the formation of electrodeposited composite coatings [J]. Trans. Inst. Met. Finish., 1976, 54(4): 178
[64] Honey F J, Kedward E C, Wride V. The development of electrodeposits for high-temperature oxidation/corrosion resistance [J]. J. Vac. Sci. Technol., 1986, 4A(6): 2593
[65] Yang X P, Peng X, Wang F H. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy [J]. Appl. Surf. Sci., 2007, 253(9): 4420
[66] Yang X, Peng X, Xu C, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156(5): 167
[67] Gleeson B. Thermal barrier coatings for aeroengine applications[J]. J. Propul. Power., 2006, 22 (2): 37
[68] Gleeson B, Sordelet D, Wang W. High-temperature coating with Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions [P]. U.S.: US7273662B2, 2007
[69] Vassen R, Jarligo M O, Steinke T, et al. Overview on advanced thermal barrier coatings [J]. Surf. Coat. Technol., 2010, 205(4): 938
[70] Vassen R, Stuke A, St?ver D. Recent developments in the Field of thermal barrier coatings [J]. J. Therm. Spray Technol. 2009, 18(2):181
[71] Schulz U, Saruhan B, Fritscher K, et al. Review on advanced EB-PVD ceramic topcoat of TBC applications [J]. Int. J. Appl. Ceram. Technol., 2004, 1(4): 302
[72] Peters M, Leyens C, Schulz U, et al. EB-PVD thermal barrier coatings for aeroengines and gas turbines [J]. Adv. Eng. Mater., 2001, 3(4): 193
[73] Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerosol Sci. Technol., 2003, 7(1): 73
[74] Beele W, Eschendorff G. High speed PVD thermal barrier coatings [J]. Adv. Eng. Mater., 2006, 8(7): 673
[75] Hasz W C, Johnson C A, Borom M P. Protected thermal barrier coating composite with multiple coatings [P]. U.S.: 5,914,189, 1999
[76] Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7(5): 662
[77] Seraffon M, Simms N J, Sumner J, et al. The development of new bond coat compositions for thermal barrier coating systems operating under industrial gas turbine conditions [J]. Surf. Coat. Technol., 2011, 206(7): 1529
[78] Lehnert G,Meinhardt H. Present state and trend of development of surface coating methods against oxidation and corrosion at high temperatures [J]. Electrodepos. Surf. Treat., 1972, 1(1): 71
[79] Burman C, Ericsson T, Kvernes I, et al. Coatings with lenticular oxides preventing interdiffusion [J]. Surf. Coat. Technol., 1987, 32(1-4): 127
[80] Wu F, Murakami H, Suzuki A. Development of an iridium-tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75 [J]. Surf. Coat. Technol., 2003, 168(1): 62
[81] Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protective coatings [J]. Surf. Coat. Technol., 2004, 188: 153
[82] Cavaletti E, Naveos S, Mercier S J, et al. Ni-W diffusion barrier: Its influence on the oxidation behavior of a β-(Ni, Pt)Al coated fourth generation nickel-base superalloy [J]. Surf. Coat. Technol., 2009, 204 (6-7): 761
[83] Narita T, Ford S, Yoshioka T, et al. Formation of Pt-modified γ’-Ni3Al and Re-based σ-alloy coating system and cyclic oxidation behavior of coated superalloy [J]. Mater. Sci. Forum., 2008, 595-598: 135
[84] Knotek O, Lugscheider E, Loffler F, et al. Diffusion barrier coatings with active bonding, designed for gas turbine blades [J]. Surf. Coat. Technol., 1994, 68: 22
[85] Wang Q M, Wu Y N, Guo M H, et al. Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J]. Surf. Coat. Technol., 2005, 197(1): 68
[86] Muller J, Neuschutz D. Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades [J]. Vacuum, 2003, 71(1-2): 247
[87] Lou H Y, Wang F H. Effect of Ta, Ti and TiN barriers on diffusion and oxidation kinetics of sputtered CoCrAlY coatings [J]. Vacuum, 1992, 43(5-7): 757
[88] 李伟洲, 王启民, 孙超. 高温防护涂层扩散阻挡层的研究进展 [J]. 材料导报, 2009, 23(5): 30
[89] Coad J P,Rickerby D S,Oberlander B C. The use of titanium nitride as a diffusion barrier for M-Cr-A1-Y coatings [J]. Mater. Sci. Eng., 1985, 74(1): 93 |