Please wait a minute...
腐蚀科学与防护技术  2013, Vol. 25 Issue (3): 175-183    
  综述 本期目录 | 过刊浏览 |
高温防护涂层研究进展
王心悦1,2,辛丽2,韦华2,朱圣龙2,王福会2
1. 东北大学材料与冶金学院 沈阳 110819;
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Progress of High-temperature Protective Coatings
WANG Xinyue1,2, XIN Li2, WEI hua2, ZHU Shenglong2, WANG Fuhui2
1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China;
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(536 KB)  
摘要: 

简要介绍了高温防护涂层的发展进程,特别关注航空航天领域中几种常用的高温涂层,包括扩散涂层、MCrAlY包覆涂层和热障涂层;介绍了新概念涂层和玻璃基复合涂层等特色高温防护涂层;综述了国内外关于包括抗氧化或耐腐蚀涂层、热障涂层和扩散阻挡层等高温涂层的最新研究进展;还讨论了高温涂层未来的发展。

关键词 高温防护涂层热障涂层综述    
Abstract

The history of protective coatings for superalloys is traced, and the traditional high temperature protective coatings presently used in gas turbine airfoils are described,including diffusion coatings, MCrAlY overlay coatings and thermal barrier coatings. Several new concept coatings, such as microcrystalline coating, equilibrium coating (EQ coating), functionally graded coatings and smart coatings, and glass-based high temperature coatings are briefly introduced. Recent progresses in high temperature protective coatings are reviewed, including oxidation and /or corrosion resistant coatings, thermal barrier coatings and diffusion barrier coatings. The most fruitful progresses achieved were in the field of thermal barrier coatings, not only promising top ceramic materials but also advanced processing routes have been extensively investigated. Finally the development prospect of high temperature protective coatings is also discussed.

    
ZTFLH:  TG174.44  

引用本文:

王心悦,辛丽,韦华,朱圣龙,王福会. 高温防护涂层研究进展[J]. 腐蚀科学与防护技术, 2013, 25(3): 175-183.
WANG Xinyue, XIN Li, WEI hua, ZHU Shenglong, WANG Fuhui. Progress of High-temperature Protective Coatings. Corrosion Science and Protetion Technology, 2013, 25(3): 175-183.

链接本文:

https://www.cspt.org.cn/CN/      或      https://www.cspt.org.cn/CN/Y2013/V25/I3/175

[1] Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108-109(1-3): 73
[2] Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base supperalloys [J]. Oxid. Met., 1971, 3(5): 475
[3] Streiff R, N’Gandu Muamba J M, Boone D H. Surface morphology of diffusion aluminide coatings [J]. Thin Solid Films, 1984, 119(3): 291
[4] Mevrel R, Duret C, Pichoir R. Pack cementation processes [J]. Mater. Sci. Technol., 1986, 2(3): 201
[5] Kircher T A, Mcmordie B G, Mccarter A. Performance of a silicon-modified aluminide coating in high-temperature hot corrosion test coditions [J]. Surf. Coat. Technol., 1994, 68-69: 32
[6] Young S G, Deadmore D L. An experimental low-cost silicon aluminide high-temperature coating for super-alloys [J]. Thin Solid Films, 1980, 73(2): 373
[7] Grunling H W, Bauer R. The role of silicon in corrosion-resistant high-temperature coatings [J]. Thin Solid Films, 1982, 95(1): 3
[8] Meier G H, Pettit F S. High temperature corrosion of alumina-forming coatings for supperalloys [J]. Surf. Coat. Technol., 1989, 39-40(1-3): 76
[9] Tawancy H M. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49(1-3): 1
[10] Nicholls J R. Designing oxidation-resistant coatings [J]. JOM, 2000, 52(1): 28
[11] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 432
[12] 李铁藩. 金属的氧化与腐蚀 [M]. 北京: 化学工业出版社, 2003: 292
[13] 内尔·伯克斯, 杰拉德·迈耶, 弗雷德·佩蒂特著, 辛丽, 王文译. 金属高温氧化导论 [M]. 北京: 高等教育出版社, 2010: 248
[14] 朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料 [M]. 上海: 上海科学技术出版社, 1995. 1
[15] 王福会. 高温合金微晶涂层 [D]. 沈阳: 中国科学院金属腐蚀与防护研究所, 1992
[16] 楼翰一. 高温合金微晶涂层的发展 [J]. 吉林工学院学报, 1997, 18(3): 1
[17] 王福会, 楼翰一, 吴维 . 高温合金微晶涂层研究之进展 [J]. 真空科学与技术, 1994, 14(4): 287
[18] Lou H Y, Wang F H, Xia B J, et al. High-temperature oxidaton resistance of sputtered micro-grain supperalloy K38G [J]. Oxid. Met., 1992, 38(3-4): 299
[19] Wang F H. The effect of nanocrystallization on the selective oxidation and adhersion of Al2O3 scales [J]. Oxid. Met., 1997, 48(3-4): 215
[20] Lou H Y, Tang Y J, Sun X F, et al. Oxidation behavior of sputtered microcyrstalline coating of supperalloy K17F at high temperature [J]. Mater. Sci. Eng., 1996, A207(1): 121
[21] Wang F H, Yong D J. Effect of nanocrystallization on the corrosion resistance of K38G supperalloy in CO+CO2 atmospheres [J]. Oxid. Met., 1997, 48(5-6): 497
[22] Geng S J, Wang F H, Zhu S L, et al. Hot-corrosion resistance of a sputtered K38G nanocrystalline coating in molten sulfate at 900 ℃[J]. Oxid. Met., 2002, 57(5-6): 549
[23] Geng S J, Wang F H, Zhang S. Cross-sectional oxide distribution of cast IN738 and its sputtered coating at 1000 ℃ [J]. Surf. Coat. Technol., 2003, 167(2-3): 161
[24] Wang F H, Lou H Y. Oxidation behaviour and scale morphology of normal-grained Co30Cr5Al alloy and its sputtered microcrystalline coating [J]. Mater. Sci. Eng., 1990, A129: 279
[25] Suzuki A, Rae C M F. Secondary reaction zone formations in coated Ni-base single crystal superalloys [C]. USA: IOP Publishing, 2009: 1
[26] Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39(7)A: 1647
[27] Das D K, Gleeson B, Murphy K S, Ma S, et al. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings [J]. Mater. Sci. Technol., 2009, 25(2): 300
[28] Handoko L T, Siregar M R T. International Workshop on Advanced Material for New and Renewable Energy [M]. USA: American Insitute of Physics, 2009: 63
[29] Kawagishi K, Sato A, Harada H. A concept for the EQ coating system for nickel-Based superalloys [J]. JOM, 2008, 60(7): 31
[30] Sato A, Harada H, Kawagishi K. Development of a New Bond Coat“EQ Coating” System [J]. Metall. Mater. Trans., 2006, 37(3)A: 789
[31] Lee W Y, Stinton D P. Concept of Functionally graded materials for advanced thermal barrier coating applications [J]. J. Am. Ceram. Soc., 1996, 79(12): 3003
[32] Kim J H, Kim M C, Park C G. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique [J]. Surf. Coat. Technol., 2003, 168(2-3): 275
[33] Xiong H P, Kawasaki A, KanY S, et al. Experimental study on heat insulation performance of functionally graded metal/ceramic coatings and their fracture behavior at high surface temperatures [J]. Surf. Coat. Technol., 2005, 194(2-3): 203
[34] Hamatani H, Shimoda N, Kitaguchi S. Effect of the composition profile and density of LPPS sprayed functionally graded coating on the thermal shock resistance [J]. STAM, 2003, 4: 197
[35] Markworth A J, Ramesh K S, Parks W P. Modelling studies applied to functionally graded materials [J]. J. Mater. Sci., 1995, 30: 2183
[36] Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice [J]. Surf. Coat. Technol., 2002, 149(2-3): 236
[37] 关春红, 唐兆麟, 王福会等. 搪瓷涂层对Ti-24Al-14Nb-3V抗氧化及热腐蚀性能的影响 [J]. 材料研究学报, 2000, 14(增刊): 75
[38] Xiong Y M, Wang F H, Wu W T, et al Effect of enamel coating on corrosion of Ti60 alloy [J]. Mater. Sci. Forum, 2001, 369-372: 743
[39] Xiong Y M, Zhu S L, Wang F H. The oxidation behavior and mechanical performance of Ti60 alloy with enamel coating [J]. Surf. Coat. Technol., 2005, 190(2-3): 195
[40] Xiong Y M, Zhu S L, Wang F H. The oxidation behavior of TiAlNb intermetallics with coatings at 800 ℃ [J]. Surf. Coat. Technol., 2005, 197(2-3): 322
[41] 熊玉明. 高温钛合金用超细搪瓷涂层的研究 [D]. 沈阳: 中国科学院金属研究所, 2004
[42] 郑德有. 搪瓷涂层和氧化钛铝涂层高温腐蚀机理的研究 [D]. 沈阳: 中国科学院金属研究所, 2007
[43] Zheng D Y, Xiong Y M, Zhu S L, et al. Effect of enamel coating on long-term oxidation and hot corrosion behavior of Ti-24Al-17Nb-0.5Mo alloys [J]. Trans. Nonferrous Met. Soc. China, 2004, 14(增刊): 359
[44] Zheng D Y, Zhu S L, Wang F H. Oxidation and hot corrosion behavior of a novel enamel- Al2O3 composite coating on K38G suppetalloy [J]. Surf. Coat. Technol., 2006, 200(20-21): 5931
[45] Zheng D Y, Zhu S L, Wang F H. The influence of TiAlN and enamel coatings on the corrosion behavior of Ti6Al4V alloy in the presence of solid NaCl deposit and water vapor at 450 ℃ [J]. Surf. Coat. Technol., 2007, 201(12): 5859
[46] 陈明辉. 颗粒增强改善搪瓷涂层的抗热震性能机制研究 [D]. 沈阳: 中国科学院金属研究所, 2011
[47] Chen M H, Zhu S L, Shen M L, et al. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites [J]. Mater. Sci. Eng., 2011, A 528(3): 1360
[48] 陈明辉, 朱圣龙, 王福会. NiCrAlY颗粒添加改善搪瓷力学及热震性能研究 [C]. 云南昆明: 第七届海峡两岸材料腐蚀与防护研讨会, 2010
[49] Das S, Mukhopadhyay A K, Datta S, et al. Evaluation of microwave processed glass-ceramic coating on nimonic superalloy substrate [J]. Ceram. Int., 2010, 36(3): 1125
[50] Das S, Datta S, Basu D, et al. Hot corrosion of glass coating on nickel base superalloy [J]. Ceram. Int., 2008, 34(5): 1215
[51] Datta S, Das S. A new high temperature resistant glass-ceramic coating for gas turbine engine components [J]. Bull. Mater. Sci., 2005, 28(7): 689
[52] Sarkar S, Datta S, Das S, et al. Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings [J]. Surf. Coat. Technol. 2009, 203(24): 1797
[53] Dietrich M, Verlotski V, Vaβen R, et al. Metal-glass based composites for novel TBC-system [J]. Materialwiss. Werkstofftech., 2001, 32(8): 669
[54] Mack D E, Gross S M, Vaβen R, et al. Metal-glass based composites for application in TBC-systems [J]. J. Therm. Spray Technol., 2006, 15(4): 652
[55] Murakami H, Matsumura Y, Kasai K. Effect of Ir addition to Pt-based oxidation resistant coatings [C]. France: Les Embiez, 2012: 20
[56] Liu X, Huang L, Bao Z B, et al. Oxidation behavior of graded NiCrAlYRe coatings at 900, 1000 and 1100 ℃[J]. Oxid. Met., 2009, 71(3-4): 125
[57] Itoh Y, Saitoh M. Mechanical properties of overaluminized MCrAlY coatings at room temperature [J]. J. Eng. Gas Turb. Power, 2005, 127(4): 807
[58] Bao Z B, Wang Q M, Li W Z, et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy [J]. Corros. Sci., 2009, 51(4): 860
[59] Jiang S M, Li H Q, Ma J, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating. II: Oxidation and hot corrosion [J]. Corros. Sci., 2010, 52(7): 2316
[60] Ma J, Jiang S M, Li H Q, et al. Microstructure and oxidation behaviour of an AlSiY/NiCrAlYSi composite coating at 1150 ℃ [J].Corros. Sci., 2011, 53(4): 1417
[61] 鲁金涛. NiCrAlY 涂层热扩散制备方法及高温氧化和高温腐蚀行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011
[62] 郭鹤同, 张三元. 复合镀层 [M]. 天津: 天津大学出版社, 1991
[63] Foster J, Cameron B P. Effect of current density and agitation on the formation of electrodeposited composite coatings [J]. Trans. Inst. Met. Finish., 1976, 54(4): 178
[64] Honey F J, Kedward E C, Wride V. The development of electrodeposits for high-temperature oxidation/corrosion resistance [J]. J. Vac. Sci. Technol., 1986, 4A(6): 2593
[65] Yang X P, Peng X, Wang F H. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy [J]. Appl. Surf. Sci., 2007, 253(9): 4420
[66] Yang X, Peng X, Xu C, et al. Electrochemical assembly of Ni-xCr-yAl nanocomposites with excellent high-temperature oxidation resistance [J]. J. Electrochem. Soc., 2009, 156(5): 167
[67] Gleeson B. Thermal barrier coatings for aeroengine applications[J]. J. Propul. Power., 2006, 22 (2): 37
[68] Gleeson B, Sordelet D, Wang W. High-temperature coating with Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions [P]. U.S.: US7273662B2, 2007
[69] Vassen R, Jarligo M O, Steinke T, et al. Overview on advanced thermal barrier coatings [J]. Surf. Coat. Technol., 2010, 205(4): 938
[70] Vassen R, Stuke A, St?ver D. Recent developments in the Field of thermal barrier coatings [J]. J. Therm. Spray Technol. 2009, 18(2):181
[71] Schulz U, Saruhan B, Fritscher K, et al. Review on advanced EB-PVD ceramic topcoat of TBC applications [J]. Int. J. Appl. Ceram. Technol., 2004, 1(4): 302
[72] Peters M, Leyens C, Schulz U, et al. EB-PVD thermal barrier coatings for aeroengines and gas turbines [J]. Adv. Eng. Mater., 2001, 3(4): 193
[73] Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerosol Sci. Technol., 2003, 7(1): 73
[74] Beele W, Eschendorff G. High speed PVD thermal barrier coatings [J]. Adv. Eng. Mater., 2006, 8(7): 673
[75] Hasz W C, Johnson C A, Borom M P. Protected thermal barrier coating composite with multiple coatings [P]. U.S.: 5,914,189, 1999
[76] Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7(5): 662
[77] Seraffon M, Simms N J, Sumner J, et al. The development of new bond coat compositions for thermal barrier coating systems operating under industrial gas turbine conditions [J]. Surf. Coat. Technol., 2011, 206(7): 1529
[78] Lehnert G,Meinhardt H. Present state and trend of development of surface coating methods against oxidation and corrosion at high temperatures [J]. Electrodepos. Surf. Treat., 1972, 1(1): 71
[79] Burman C, Ericsson T, Kvernes I, et al. Coatings with lenticular oxides preventing interdiffusion [J]. Surf. Coat. Technol., 1987, 32(1-4): 127
[80] Wu F, Murakami H, Suzuki A. Development of an iridium-tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75 [J]. Surf. Coat. Technol., 2003, 168(1): 62
[81] Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protective coatings [J]. Surf. Coat. Technol., 2004, 188: 153
[82] Cavaletti E, Naveos S, Mercier S J, et al. Ni-W diffusion barrier: Its influence on the oxidation behavior of a β-(Ni, Pt)Al coated fourth generation nickel-base superalloy [J]. Surf. Coat. Technol., 2009, 204 (6-7): 761
[83] Narita T, Ford S, Yoshioka T, et al. Formation of Pt-modified γ’-Ni3Al and Re-based σ-alloy coating system and cyclic oxidation behavior of coated superalloy [J]. Mater. Sci. Forum., 2008, 595-598: 135
[84] Knotek O, Lugscheider E, Loffler F, et al. Diffusion barrier coatings with active bonding, designed for gas turbine blades [J]. Surf. Coat. Technol., 1994, 68: 22
[85] Wang Q M, Wu Y N, Guo M H, et al. Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J]. Surf. Coat. Technol., 2005, 197(1): 68
[86] Muller J, Neuschutz D. Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades [J]. Vacuum, 2003, 71(1-2): 247
[87] Lou H Y, Wang F H. Effect of Ta, Ti and TiN barriers on diffusion and oxidation kinetics of sputtered CoCrAlY coatings [J]. Vacuum, 1992, 43(5-7): 757
[88] 李伟洲, 王启民, 孙超. 高温防护涂层扩散阻挡层的研究进展 [J]. 材料导报, 2009, 23(5): 30
[89] Coad J P,Rickerby D S,Oberlander B C. The use of titanium nitride as a diffusion barrier for M-Cr-A1-Y coatings [J]. Mater. Sci. Eng., 1985, 74(1): 93

[1] 张万友,李红,隋兴东,郭军科,于金山,王鑫焱. 钢接地极在降阻剂中的腐蚀研究进展[J]. 腐蚀科学与防护技术, 2017, 29(1): 80-84.
[2] 许萍,翟羽佳,王婧,张雅君,司帅,魏智刚. 从新的视角理解生物膜——微生物防腐蚀研究进展[J]. 腐蚀科学与防护技术, 2016, 28(4): 356-360.
[3] 撒世勇,王大伟. 热障涂层材料与技术的研究进展[J]. 腐蚀科学与防护技术, 2014, 26(5): 479-482.
[4] 韩玉君, 叶福兴, 董允, 王志平, 丁坤英, 林晓娉. 超音速微粒轰击处理对NiCoCrAlY粘结层高温氧化行为的影响[J]. 腐蚀科学与防护技术, 2011, 23(3): 214-218.
[5] 周长海, 马海涛, 王来. 外加应力下合金高温氧化膜的生长及其失效愈合研究现状[J]. 腐蚀科学与防护技术, 2010, 22(6): 558-562.
[6] 李巧霞;王振尧;韩薇;韩恩厚. 不锈钢的大气腐蚀[J]. 腐蚀科学与防护技术, 2009, 21(6): 549-552.
[7] 李晓伟;高延敏. CO2腐蚀的研究现状及其控制措施[J]. 腐蚀科学与防护技术, 2009, 21(6): 553-555.
[8] 唐丹;邢桂菊;王开明;姜效军. 钢材阻锈技术的研究与发展[J]. 腐蚀科学与防护技术, 2009, 21(6): 556-559.
[9] 马北越;孙勇;于景坤;孙振兴. Al2O3-C耐火材料抗氧化性研究进展[J]. 腐蚀科学与防护技术, 2009, 21(6): 560-562.
[10] 伍廉奎;高勇;杨丽霞. 铜及其合金抗氧化工艺研究现状与前景[J]. 腐蚀科学与防护技术, 2009, 21(6): 563-567.
[11] 沈大娲;马清林. 硅酸盐缓蚀剂的研究及其在铁质文物保护中的应用[J]. 腐蚀科学与防护技术, 2009, 21(6): 568-570.
[12] 徐松; 吴欣强; 韩恩厚; 柯伟 . 核电站用钢的高温高压水腐蚀疲劳研究进展[J]. 腐蚀科学与防护技术, 2007, 19(5): 345-349 .
[13] 江旭; 柳伟; 路民旭 . 钢铁海洋大气腐蚀试验方法的研究进展[J]. 腐蚀科学与防护技术, 2007, 19(4): 282-286 .
[14] 张玲玲; 杜敏; 颜民 . 工程用参比电极的研究进展[J]. 腐蚀科学与防护技术, 2006, 18(6): 433-435 .
[15] 罗宏; 龚敏 . 奥氏体不锈钢的晶间腐蚀[J]. 腐蚀科学与防护技术, 2006, 18(5): 357-360 .