Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1070-1076    DOI:
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF FORMING PROCESS OF HUMPING BEAD IN HIGH SPEED GMAW
CHEN Ji; WU Chuansong
Institute for Materials Joining; Shandong University; Jinan 250061
Cite this article: 

CHEN Ji WU Chuansong. NUMERICAL SIMULATION OF FORMING PROCESS OF HUMPING BEAD IN HIGH SPEED GMAW. Acta Metall Sin, 2009, 45(9): 1070-1076.

Download:  PDF(1339KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High speed GMAW (gas metal arc welding) is an effective way to improve the welding productivity, however, its application is usually limited by the occurrence of several weld bead defects, such as humping bead. Based on the experimental results, a mathematical model is developed to analyze the forming mechanism of humping bead for high speed GMAW through considering both the momentum and heat content of the backward flowing molten jet in weld pools. One term related to the momentum of backward jet is added to the equation of weld pool surface deformation, and the heat content of overheated droplets is distributed within the layer covering the whole pool.  The humping bead forming process and its dimension and 3D geometry are numerically simulated, and compared with the experimental measurement under some welding conditions. It is found that the model can describe and characterize the humping formation in high speed GMAW quantitatively.

Key words:  welding      high-speed GMAW      humping weld bead      numerical simulation     
Received:  08 December 2008     
ZTFLH: 

TG444

 
Fund: 

Supported by National Natural Science Foundation of China (No.50675119) and Specialized Research Fund for the Doctoral Program of High Eduction (No.20050422027)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1070

[1] Ueyama T, Ohnawa T, Yamazaki K, Tanaka M, Ushio M,
Nakata K. Trans JWRI, 2005; 34: 11
[2] Bradstreet B J. Weld J, 1968; 47: 314
[3] Gratzke U, Kapadia P D, Dowden J, Kroos J, Simon G. J
Phys, 1992; 25D: 1640
[4] Mendez P F, Eager T W. Weld J, 2003; 82: 296
[5] Nguyen T C, Weckman D C, Johnson D A. Sci Technol
Weld Join, 2005; 10: 447
[6] Hu Z K, Wu C S. Acta Metall Sin, 2008; 44: 119
(胡志坤, 武传松. 金属学报, 2008; 44: 119)
[7] Hu Z K, Wu C S. Chin Weld, 2008; 17(2): 15
[8] Wu C S. Welding Thermal Processes and Weld Pool Behaviors.
Beijing: Machinery Press, 2008: 110
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 110)
[9] Wu C S, Dorn L. Acta Metall Sin, 1997; 33: 774
(武传松, Dorn L. 金属学报, 1997; 33: 774)
[10] Wu C S, Chen J, Zhang Y M. Comput Mater Sci, 2007;
39: 635
[11] Jost J, Li–Jost X. Calculus of Variation. Cambridge:
Cambridge University Press, 1998: 20
[12] Cho M H. PhD Thesis. Ohio State University, Columbus,
USA, 2006: 79
[13] Cao Z N, Dong P. Trans ASME, 1998; 120H: 31

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] CHEN Huabin, CHEN Shanben. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. 金属学报, 2022, 58(4): 541-550.
[6] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[7] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[9] WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. 金属学报, 2021, 57(9): 1126-1140.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[12] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[13] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[14] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[15] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
No Suggested Reading articles found!