Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (12): 2415-2423    DOI: 10.1016/j.jmst.2018.06.007
Orginal Article Current Issue | Archive | Adv Search |
Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer
Ying Gongab, Wenying Zhouab*(), Zijun Wangac, Li Xua, Yujia Koua, Huiwu Caia, Xiangrong Liua, Qingguo Chenb**(), Zhi-Min Dangad*()
a College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an 710054, China;
b Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
c Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
d State Key Laboratory of Power System and Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, graphene oxide (GO) nanosheets with surface modification by Tannic and Fe coordination complexes (TA-Fe) were incorporated into poly(vinylidene fluoride) (PVDF) to prepare high constant but low loss polymer nanocomposites, and the effect of TA-Fe interlayer on dielectric properties of the GO@TA-Fe/PVDF nanocomposites was investigated. The results indicate that the dosage, mixing ratio, and reaction time of TA-Fe complexes have obvious influences on the dielectric properties of the nanocomposites. Furthermore, the TA-Fe interlayer significantly influences the electrical properties of GO@TA-Fe nanoparticles and their PVDF composites, and the GO@TA-Fe/PVDF composites exhibit superior dielectric properties compared with raw GO/PVDF. Dielectric losses of the GO@TA-Fe/PVDF are significantly suppressed to a rather low level owing to the presence of TA-Fe layer, which serves as an interlayer between the GO sheets, thus preventing them from direct contacting with each other. Additionally, the dynamic dielectric relaxation of the GO/PVDF and GO@TA-Fe/PVDF nanocomposites was investigated in terms of temperature.

Key words:  Dielectric properties      Polymer nanocomposites      Interface layer      Relaxation     
Received:  26 February 2018      Published:  15 November 2018
Corresponding Authors:  Zhou Wenying,Chen Qingguo,Dang Zhi-Min     E-mail:  12393784@qq.com;qgchen@263.net;dangzm@tsinghua.edu.cn

Cite this article: 

Ying Gong, Wenying Zhou, Zijun Wang, Li Xu, Yujia Kou, Huiwu Cai, Xiangrong Liu, Qingguo Chen, Zhi-Min Dang. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer. J. Mater. Sci. Technol., 2018, 34(12): 2415-2423.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2018.06.007     OR     http://www.jmst.org/EN/Y2018/V34/I12/2415

Fig. 1.  (a) FT-IR spectra of TA, GO@TA-Fe and GO nanoparticles, (b) Raman spectroscope patterns of GO and GO@TA-Fe nanoparticles, and (c) Micrograph and elemental analysis image of GO@TA-Fe.
Fig. 2.  SEM images of (a) GO, (b) GO@TA-Fe particles, (c) GO/PVDF composites, and (d) GO@TA-Fe/PVDF composites.
Fig. 3.  TEM of GO@TA-Fe particles.
Fig. 4.  Frequency dependence of (a) dielectric constant and (b) dielectric loss tangent of GO@TA-Fe/PVDF composites with different mole ratios of Fe and TA (The filler loading for the composites is 1?wt%).
Fig. 5.  Frequency dependence of (a) dielectric constant and (b) dielectric loss tangent of GO@TA-Fe/PVDF composites with different concentration of TA-Fe (The filler loading for the composites is 2?wt%).
Fig. 6.  Frequency dependence of (a) dielectric constant and (b) dielectric loss tangent of GO@TA-Fe/PVDF composites with different reaction time (The filler loading for the composites is 2?wt%).
Fig. 7.  Frequency dependence of dielectric constant, dielectric loss tangent and electrical conductivity of GO@TA-Fe/PVDF (a, c, e) and GO/PVDF composites (b, d, f) with different GO@TA-Fe filler loading (The reaction time and TA-Fe concentration is 1?h and 0.5?g/L, respectively).
Fig. 8.  Temperature dependence of (a) dielectric constant (b) dielectric loss tangent, and (c) the imaginary part of electric modulus of 1?wt% GO@TA-Fe/PVDF composites with varied frequency (The insets in three figures are dielectric properties for the 1?wt% GO/PVDF composites).
System Dk/tanδ Reference
GO@TA-Fe/PVDF (1?wt%) 110/0.12 (1?kHz) This work
GO/PVDF (0.1?wt%) 35/0.64 (1?kHz) [6]
rGO/PVDF (0.1?wt%) 52/1.12 (1?kHz) [6]
BT-GO/PVDF (10?vol%) 20.8/0.047 (1?kHz) [19]
BT-rGO/PVDF (10?vol%) 18.3/0.044 (1?kHz) [19]
rGO-PVA/PVDF (2.2?vol%) 50/0.5 (1?kHz) [23]
DGEBA-rGO/EP (1?wt%) 32/0.08 (1?kHz) [29]
Ag-GO/P(VDF-HFP) (3?vol%) 65/<0.1 (100?Hz) [31]
rGO/TiO2/PVDF (10.9?vol%) 1741/0.39 (100?Hz) [36]
GPTS-SiO2@GO/PI (20?wt%) 79/0.25 (40?Hz) [40]
Table 1  Comparison of different dielectric properties of GO/polymers.
[1] Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.Y. Cheng, H. Xu, Nature 419 (2002) 284-287.
[2] Y. Shen, Y. Lin, C. Nan, Adv. Funct. Mater. 17(2007) 2405-2410.
doi: 10.1002/adfm.200700200
[3] Z.M. Dang, M.S. Zheng, J.W. Zha, Small 12 (2016) 1688-1701.
[4] G.Q. Zhang, D. Brannum, D.X. Dong, L.X. Tang, E. Allahyarov, S. Tang, K.Kodweis, J.K. Lee, L. Zhu, Chem. Mater. 28(2016) 4646-4660.
doi: 10.1021/acs.chemmater.6b01383
[5] P. He, J.C. Feng, Y.Y. Qian, J. Mater. Sci.Technol. 20(2004) 109-112.
[6] M.A. Rahman, B.C. Lee, D.T. Phan, G.S. Chung, Smart Mater. Struct. 22(2013)1-10.
[7] J.W. Lee, J.H. Koh, Ceram. Int. 43(2017) 9493-9497.
doi: 10.1016/j.ceramint.2017.04.130
[8] Z.J. Wang, W.Y. Zhou, X.Z. Sui, L.N. Dong, Q.G. Chen, J. Zuo, H.W. Cai, HighPerform. Polym. 29(2017) 3-12.
[9] S. Moharana, R.N. Mahaling, Chem. Phys. Lett. 680(2017) 31-36.
doi: 10.1016/j.cplett.2017.05.018
[10] Z.J. Wang, W.Y. Zhou, L.N. Dong, X.Z. Sui, J. Zuo, H.W. Cai, X.R. Liu, Q.T. Chen,J.T. Cai, J. Alloys Compd. 689(2016) 342-349.
doi: 10.1016/j.jallcom.2016.07.332
[11] W.Y. Zhou, L. Xu, L.Y. Jiang, J.D. Peng, Y. Gong, X.R. Liu, H.W. Cai, G.H. Wang,Q.G. Chen, J. Alloys Compd. 710(2017) 47-56.
doi: 10.1016/j.jallcom.2017.03.232
[12] M.J. Koh, H.Y. Hwang, D.J. Kim, Y.T. Hong, S.Y. Nam, J. Mater. Sci.Technol. 26(2010) 633-638.
[13] Z.J. Wang, W.Y. Zhou, L.N. Dong, X.Z. Sui, H.W. Cai, J. Zuo, Q.G. Chen, J. AlloysCompd. 682(2016) 738-745.
[14] W.Y. Zhou, Z.J. Wang, X.Z. Sui, L.N. Dong, Q.G. Chen, Compos. Part A: Appl. Sci.Manuf. 79(2015) 183-191.
doi: 10.1016/j.compositesa.2015.09.004
[15] M. Yang, H. Zhao, D. He, J. Bai, Carbon 116 (2017) 94-102.
[16] Z.J. Wang, W.Y. Zhou, X.Z. Sui, L.N. Dong, J. Reinf. Plast.Compos. 34(2015)1126-1135.
[17] Y. Chen, H. Zhang, Y. Yang, M. Wang, A. Cao, Z.Z. Yu, Adv. Funct. Mater. 26(2016) 447-455.
doi: 10.1002/adfm.201503782
[18] Z.Y. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q.B. Zheng, Carbon 123 (2017)385-394.
[19] Y. Li, Y. Shi, F. Cai, J. Xue, F. Chen, Q. Fu, Compos. Ptart A: Appl. Sci. Manuf. 78(2015) 318-326.
doi: 10.1016/j.compositesa.2015.08.031
[20] N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia, B.Z. Tang, M.S. Chen, J.K. Kim, Adv.Mater. 26(2014) 5480-5487.
doi: 10.1002/adma.201305293 pmid: 24715671
[21] C. Huang, Q.M. Zhang, G. Debotton, K.S. Bhattacharya, Appl. Phys. Lett. 84(2014) 4391-4393.
[22] W.Y. Zhou, Y. Gong, L.T. Tu, L. Xu, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, J.Alloys Compd. 693(2017) 1-8.
doi: 10.1016/j.jallcom.2016.09.178
[23] D.R. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.-M. Dang, G.H. Hu, Appl. Mater.Interfaces 4 (2012) 6273-6279.
[24] W.Y. Zhou, Q.G. Chen, X.Z. Sui, L.N. Dong, Z.J. Wang, Compos. Part A: Appl. Sci.Manuf. 71(2015) 184-191.
doi: 10.1016/j.compositesa.2015.01.024
[25] X.Y. Huang, P.K. Jiang, Adv. Mater. 27(2015) 546-555.
doi: 10.1002/adma.201401310 pmid: 25186029
[26] C.C. Roach, Y.C. Lu, J. Mater. Sci.Technol. 8(2017) 827-833.
[27] W.Y. Zhou, L.N. Dong, X.Z. Sui, Z.J. Wang, J. Zuo, H.W. Cai, Q.G. Chen, J. Polym.Res. 23(2016) 1-9.
doi: 10.1007/s10965-015-0892-2
[28] G.L. Wu, Y.Q. Wang, K.K. Wang, A.L. Feng, RSC Adv. 6(2016) 102542-102548.
doi: 10.1039/C6RA22794E
[29] Y.J. Wan, W.H. Yang, S.H. Yu, R. Sun, C.P. Wang, W.H. Liao, Compos. Sci.Technol. 122(2016) 27-35.
doi: 10.1016/j.compscitech.2015.11.005
[30] D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, ACS Appl. Mater.Interface 4 (2012) 6273-6279.
[31] S. Moharana, R.N. Mahaling, Chem. Phys. Lett. 680(2017) 31-36.
doi: 10.1016/j.cplett.2017.05.018
[32] J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, ACS Nano 4 (2010) 6557-6564.
[33] N.V. Medhekar, A. Ramasubramaniam, R.S. Ruoff, V.B. Shenoy, ACS Nano 4(2010) 2300-2306.
[34] L.Z. Song, Z. Zhang, S.Z. Song, Z. Gao, J. Mater. Sci.Technol. 23(2007) 55-60.
[35] D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, ACS Appl. Mater.Interface 4 (2012) 6273-6279.
[36] C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, P. Jiang, J. Mater. Chem. 21(2011)17729-17736.
doi: 10.1039/c1jm12903a
[37] P.G. Ren, X.H. Liu, F. Ren, G.J. Zhong, X. Ji, L. Xu, Polym. Test. 58(2016)173-180.
[38] J.Y. Kim, H. Kim, T.Y. Kim, S. Yu, J.W. Suk, T. Jeong, S.J. Song, M.J. Bae, I. Han, D.Jung, S.H. Park, J. Mater. Chem. C 1 (2013) 5078-5083.
[39] F. Wen, Z. Xu, S. Tan, W. Xia, X. Wei, Z. Zhang, ACS. Appl. Mater. Interface 5(2013) 9411-9420.
[40] L.P. Liu, F.Z. Lv, Y.H. Zhang, P.G. Li, W.S. Tong, L. Ding, G.Q. Zhang, Compos. PartA: Appl. Sci. Manuf. 99(2017) 41-47.
doi: 10.1016/j.compositesa.2017.03.029
[41] I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett. 7(2007)2645-2649.
doi: 10.1021/nl071033g pmid: 17718584
[42] R. Liao, Z. Tang, Y. Lei, B. Guo, J. Phys. Chem. C 115 (2011)20740-20746.
[43] C.W. Nan, Y. Shen, J. Ma, Annu. Rev. Mater. Res. 40(2010) 131-151.
doi: 10.1146/annurev-matsci-070909-104529
[44] Y. Li, X.Y. Huang, Z.W. Hu, K.P. Jiang, S.G. Li, T. Tanaka, Appl. Mater. Interface 3(2011) 4396-4403.
[45] H. Wei, Y. Wu, N. Lun, F. Zhao, J. Mater. Sci.Technol. 39(2004) 1305-1308.
[46] L.Y. Xie, X.Y. Huang, P.K. Jiang, Y.H. Huang, K. Yang, J. Phys. Chem. C 117(2013) 22525-22537.
[47] T.T. Zhang, W.B. Huang, N. Zhang, T. Huang, J.H. Yang, Y. Wang, Eur. Polym. J.94(2017) 196-207.
doi: 10.1016/j.eurpolymj.2017.07.008
[48] C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, L.H. Feng, Carbon 55 (2013) 116-125.
[49] C. Wu, X.Y. Huang, P.K. Jiang, L.Y. Xie, X.F. Wu, J.H. Yu, J. Mater. Chem. 21(2011) 17729-17736.
doi: 10.1039/c1jm12903a
[50] Y.C. Jiao, L. Yuan, G.Z. Liang, A.J. Gu, J. Phys. Chem. C 118 (2014) 24091-24101.
[1] Changjiu Chen, Kaikin Wong, Rithin P. Krishnan, Lei Zhifeng, Dehong Yu, Zhaoping Lu, Suresh M. Chathoth. Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids[J]. 材料科学与技术, 2019, 35(1): 44-47.
[2] Muhammad Khan, Aqeel A. Khurram, Tiehu Li, Tingkai Zhao, T. Subhani, I.H. Gul, Zafar Ali, Vivek Patel. Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites[J]. 材料科学与技术, 2018, 34(12): 2424-2430.
[3] Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films[J]. 材料科学与技术, 2017, 33(7): 718-722.
[4] Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response[J]. 材料科学与技术, 2016, 32(10): 1013-1020.
[5] Mohd Anis, M.D. Shirsat, S.S. Hussaini, B. Joshi, G.G. Muley. Effect of Sodium Metasilicate on Structural, Optical, Dielectric and Mechanical Properties of ADP Crystal[J]. J. Mater. Sci. Technol., 2016, 32(1): 62-67.
[6] Qiao J.C., Pelletier J.M.. Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review[J]. J. Mater. Sci. Technol., 2014, 30(6): 523-545.
[7] Viswarupa Mohanty, Rajesh Cheruku, Lakshmi Vijayan, G. Govindaraj. Ce-substituted Lithium Ferrite: Preparation and Electrical Relaxation Studies[J]. J. Mater. Sci. Technol., 2014, 30(4): 335-341.
[8] Md. Monwar Hoque, Alo Dutta, Sanjay Kumar, Tripurari Prasad Sinha. Dielectric Relaxation and Conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3[J]. J. Mater. Sci. Technol., 2014, 30(4): 311-320.
[9] Jichun Chen. La Doping Effect on the Dielectric Property of Barium Strontium Titanate Glass–Ceramics[J]. J. Mater. Sci. Technol., 2014, 30(3): 295-298.
[10] J.C. Chen, Y. Zhang. Enhancement of Sinter Densification of SrO-BaO-Nb2O5-SiO2 Tungsten-Bronze Glass-Ceramics by Doping with P2O5 [J]. J. Mater. Sci. Technol., 2013, 29(8): 731-736.
[11] M.R. Shah, A.K.M. Akther Hossain. Structural, Dielectric and Complex Impedance Spectroscopy Studies of Lead Free Ca0.5+xNd0.5−x(Ti0.5Fe0.5)O3[J]. J. Mater. Sci. Technol., 2013, 29(4): 323-329.
[12] Angesh Chandra, Alok Bhatt, Archana Chandra. Ion Conduction in Superionic Glassy Electrolytes: An Overview[J]. J. Mater. Sci. Technol., 2013, 29(3): 193-208.
[13] Huanping Wang, Qinghua Yang, Denghao Li, Lihui Huang, Shilong Zhao, Shiqing Xu. Sintering Behavior and Microwave Dielectric Properties of MgTiO3 Ceramics Doped with B2O3 by Sol-Gel Method[J]. J. Mater. Sci. Technol., 2012, 28(8): 751-755.
[14] Guopeng Zheng, Xiaowei Yin, Jie Wang, Mengluo Guo, Xi Wang. Complex Permittivity and Microwave Absorbing Property of Si3N4−SiC Composite Ceramic[J]. J. Mater. Sci. Technol., 2012, 28(8): 745-750.
[15] Xiujian Chou, Zhenyu Zhao, Miaoxuan Du, Jun Liu, Jiwei Zhai. Microstructures and Dielectric Properties of Ba1-xSrxTiO3 Ceramics Doped with B2O3-Li2O Glasses for LTCC Technology Applications[J]. J. Mater. Sci. Technol., 2012, 28(3): 280-284.
[1] Maosheng LI, Yongnian YAN, Shihong ZHANG, Dachang KANG. Selection of Parameters in Ball-Spinning[J]. J Mater Sci Technol, 2004, 20(06): 782 -787 .
[2] Taohua HUANG, Shengming ZHOU, Hao TENG, Hui LIN, Jun ZOU, Jianhua ZHOU, Jun WANG. Growth and characterization of high-quality LiAlO2 single crystal[J]. J Mater Sci Technol, 2008, 24(02): 145 -148 .
[3] Wattanachai Prukkanon, Satit Chanpum, Chaowalit Limmaneevichitr. Effect of Sc on Precipitation Hardening of AlSi6Mg Alloy[J]. J Mater Sci Technol, 2008, 24(01): 17 -20 .
[4] Cui Yu,Yun Zhang,Tiejun Zhu,Guangyu Jiang,Ji Xu,Bo Zhao,Xinabing Zhao. Preparation and Thermoelectric Properties of Zr1-xTixNiSn0:975Sb0:025 Half-Heusler Alloys[J]. J Mater Sci Technol, 2009, 25(06): 738 -741 .
[5] G.R. Ebrahimi, H. Keshmiri, A.R. Maldar, A. Momeni. Dynamic Recrystallization Behavior of 13%Cr Martensitic tainless Steel under Hot Working Condition[J]. J Mater Sci Technol, 2012, 28(5): 467 -473 .
[6] counterpartK. Li, V.S.Y. Injeti, P. Trivedi, L.E. Murr, R.D.K. Misra. Nanoscale deformation of multiaxially forged ultrafine-grained Mg-2Zn-2Gd alloy with high strength-high ductility combination and comparison with the coarse-grained counterpart[J]. J. Mater. Sci. Technol., 2018, 34(2): 311 -316 .
[7] Xu Zhang, Dianzhong Li, Yiyi Li, Shanping Lu. Effect of aging treatment on the microstructures and mechanical properties evolution of 25Cr-20Ni austenitic stainless steel weldments with different Nb contents[J]. J. Mater. Sci. Technol., 2019, 35(4): 520 -529 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.