Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (12): 2350-2358    DOI: 10.1016/j.jmst.2018.06.003
Orginal Article Current Issue | Archive | Adv Search |
Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles
Dandan Keab, Jin Wangab, Hongming Zhangab, Yuan Liab*(), Lu Zhangab, Xin Zhaoc, Shumin Hanab*()
a Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
b State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
c School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014030, China
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets (PAMAM/rGO) composite was selected as a carrier of heterogeneous Ag0.3Co0.7 nanoparticles in order to obtain an excellent catalyst for ammonia borane (AB) hydrolysis. During the synthetic processes, GO could easily assembled with PAMAM by the electrostatic and hydrogen-bonding interactions. Structural characterization revealed that Ag0.3Co0.7 bimetallic nanoparticles with uniform size distribution of 5 nm are well dispersed on PAMAM/rGO composite architecture. Ag0.3Co0.7@PAMAM/rGO was found to be a highly active and reusable catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value (TOF) of 19.79 molH2 min-1 molM-1 at 25.0 ± 0.1 °C and retained 75.4% of their initial activity with a complete release of hydrogen in five runs. The relatively high TOF value and low apparent activation energy (34.21 kJ mol-1) make these Ag0.3Co0.7@PAMAM/rGO NPs as a high-efficient catalyst for catalytic dehydrogenation of AB facilitating the development of practically applicable energy storage materials.

Key words:  Ammonia borane      Reduced graphene oxide      Ammonia borane      Ag0.3Co0.7 bimetallic nanoparticles      Hydrolytic dehydrogenation     
Received:  02 August 2017      Published:  15 November 2018
Corresponding Authors:  Li Yuan,Han Shumin     E-mail:  liyuan@ysu.edu.cn;hanshm@ysu.edu.cn

Cite this article: 

Dandan Ke, Jin Wang, Hongming Zhang, Yuan Li, Lu Zhang, Xin Zhao, Shumin Han. Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles. J. Mater. Sci. Technol., 2018, 34(12): 2350-2358.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2018.06.003     OR     http://www.jmst.org/EN/Y2018/V34/I12/2350

Fig. 1.  (a) Schematic illustration of self-assembly of PAMAM/GO suspensions, followed by chemical reduction of Ag+ and Co2+ and (b) photographs of PAMAM dendrimers, GO dispersion, PAMAM/GO, and Ag0.3Co0.7@PAMAM/rGO suspensions; (c) Schematic illustration of the synthesized Ag-Co@PAMAM/rGO NPs applied for hydrolytic dehydrogenation of AB.
Fig. 2.  TEM images of (a) Ag0.3Co0.7, (b) Ag0.3Co0.7@rGO, (c) Ag0.3Co0.7@PAMAM, (d) Ag0.3Co0.7@PAMAM/rGO, (e) the corresponding the selected-area electron diffraction (SAED) pattern and (f) EDAX of Ag0.3Co0.7@PAMAM/rGO.
Fig. 3.  XRD patterns of GO, PAMAM/GO, Ag0.3Co0.7@PAMAM/rGO composite.
Fig. 4.  FT-IR results of GO, PAMAM, PAMAM/GO composite and Ag0.3Co0.7@PAMAM/rGO NPs.
Fig. 5.  (a) XPS survey of Ag0.3Co0.7@PAMAM/rGO; (b-e) high-resolution XPS spectrum of C1s, N1s, Ag3d5/2 and Co2p3/2 respectively; (f) high-resolution Co2p3/2XPS spectrum ofCo@PAMAM/rGO.
Fig. 6.  (a) Hydrogen evolution plots and (b) the corresponding TOF values of the AB hydrolysis (1.5 mmol, 6 mL) in the presence of Ag0.3Co0.7, Co@rGO, Co@PAMAM/rGO, Ag0.3Co0.7/PAMAM, Ag0.3Co0.7@rGO, Ag0.3Co0.7@PAMAM/rGO catalysts.
Fig. 7.  Kinetic studies of Ag0.3Co0.7@PAMAM/rGO catalyst towards hydrolysis of NH3·BH3 under different reaction parameters: (a) different NH3·BH3 concentrations; (b) plot of ln [AB] vs lnr; (c) different catalyst concentrations; (d) plot of ln [cat.] vs ln r; (e) effect of NaOH concentration from 0 to 0.25 M on NH3·BH3 hydrolysis reaction; (f) plot of ln [NaOH] vs ln r.
Fig. 8.  Effect of temperature on the hydrolysis of AB solution without (a); (b) lnk versus 1/T (Arrhenius eq.); and (c) ln (k/T) versus 1/T (Eyring eq.), [0.25 M AB, 0.05 mmol Ag0.3Co0.7@PAMAM/rGO NPs].
Catalyst TOF
(total metal)
Ea
(kJ mol-1)
Ref.
Ag0.3Co0.7/PAMAM/rGO 19.79 34.21 This study
Ag0.3Co0.7/PAMAM 15.84 35.66 [8]
PSSA-co-MA stabilized Co(0) nanoclusters 25.7 34 [34]
PEI-capped Co 39.9 28.2 [30]
PEI-GO/Fe-Ni 4.4 - [22]
Ag@Co/graphene 10.24 20.03 [12]
Ag@CoFe/graphene 8.29 32.79 [35]
graphene-CoNi 16.4 13.49 [36]
RuCo (1:1)/γ-Al2O3 16.4 47 [37]
Cryogel p(4-VP)-Co - 34.98 [38]
Amorphous Co-B, Ultrasonic hydrolysis 21.8 47.50 [39]
Co/Pdop-o-MWCNT - 50.41 [40]
Table 1  Catalytic activity of reported Ag- and/or Co- based catalysts applied for the hydrolysis of NH3·BH3.
Fig. 9.  Hydrolysis of aqueous NH3·BH3 solution catalyzed by Ag0.3Co0.7@PAMAM/rGO catalyst from the 1st to 5th cycle, insert: dehydrogenation rate values after five cycles.
[1] D.W. Himmelberger, C.W. Yoon, M.E. Bluhm, P.J. Carroll, L.G. Sneddon, J. Am.Chem.Soc. 131(2009) 14101-14110.
[2] J. Kim, T. Kim, Appl. Energy 160 (2015) 945-953.
[3] H. Zhang, T. Duan, W. Zhu, W.T. Yao, J. Phys. Chem. C 119 (2015) 21465-21472.
[4] P. Li, B. Yang, Y. Xu, J. Huang, Q. Li, RSC Adv. 6(2016) 105940-105947.
doi: 10.1039/C6RA21691A
[5] L. Yang, J. Su, W. Luo, G. Cheng, ChemCatChem 6 (2014) 1617-1625.
[6] F. Qiu, L. Li, G. Liu, C. Xu, C. An, Y. Xu, Y. Wang, Y. Huang, C. Chen, Y. Wang, L.Jiao, H. Yuan, Chemistry 9 (2014) 487-493.
[7] Y. Huang, H. Huang, Y. Liu, Y. Xie, Z. Liang, C. Liu, J. Power Sources 201 (2012)81-87.
[8] D. Ke, Y. Li, J. Wang, L. Zhang, J. Wang, X. Zhao, S. Yang, S. Han, Int. J. HydrogenEnergy 41 (2016) 2564-2574.
[9] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22(2010) 3906-3924.
doi: 10.1002/adma.201001068 pmid: 20706983
[10] V.H. Pham, T.T. Dang, S.H. Hur, E.J. Kim, J.S. Chung, ACS Appl. Mater. Interfaces4(2012) 2630-2636.
[11] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y.Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2017) 1558-1565.
[12] L. Yang, W. Luo, G. Cheng, ACS Appl. Mater. Interfaces 5 (2013) 8231-8240.
[13] S. Guo, S. Sun, J. Am. Chem.Soc. 134(2012) 2492-2495.
[14] S. Cho, M. Kim, J. Jang, ACS Appl. Mater. Interfaces 7 (2015)10213-10227.
[15] M. Li, J. Hu, Z. Chen, H. Lu, RSC Adv. 4(2014) 41152-41158.
doi: 10.1039/C4RA05607H
[16] H. Cai, L. Liu, Q. Chen, P. Lu, J. Dong, Energy 99 (2016) 129-135.
[17] R. Rajesh, R. Venkatesan, J. Mol. Catal. A Chem. 359(2012) 88-96.
doi: 10.1016/j.molcata.2012.04.001
[18] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3(2008)101-105.
doi: 10.1038/nnano.2007.451 pmid: 18654470
[19] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V.Buzaneva, A.D. Gorchinskiy, Chem. Mater. 11(1999) 771-778.
doi: 10.1021/cm981085u
[20] W.S. Hummers, R.E. Offeman, J. Am. Chem.Soc. 80(1985) 1339.
[21] S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, Polymer 51 (2010)5921-5928.
[22] X. Zhou, Z. Chen, D. Yan, H. Lu, J. Mater. Chem. 22(2012)13506-13512.
doi: 10.1039/c2jm31000g
[23] C. Hu, Q. Han, F. Zhao, Z. Yuan, N. Chen, L. Qu, Sci. China Mater. 58(2015)21-27.
doi: 10.1007/s40843-014-0012-3
[24] C. Hu, Y. Xiao, Y. Zhao, N. Chen, Z. Zhang, M. Cao, L. Qu, Nanoscale 5 (2013)2726-2733.
[25] J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, ACS Nano 9 (2015) 931-940.
[26] X. Zhong, L. Wang, H. Zhou, Y. Qin, W. Xu, Y. Jiang, Y. Sun, Z. Shi, G. Zhuang, X.Li, D. Mei, J.-G. Wang, Adv. Mater. Interfaces 2 (2015) 1500365.
[27] Z. Niu, Y. Li, Chem. Mater. 36(2013) 72-83.
[28] D. Ke, Y. Tao, Y. Li, X. Zhao, L. Zhang, J. Wang, S. Han, Int. J. Hydrogen Energy 40(2015) 7308-7317.
[29] C.Y. Cao, C.Q. Chen, W. Li, W.G. Song, W. Cai, ChemSusChem 3 (2010)1241-1244.
[30] J. Hu, Z. Chen, M. Li, X. Zhou, H. Lu, ACS Appl. Mater. Interfaces 6 (2014)13191-13200.
[31] S. Akbayrak, S. Özkar, ACS Appl. Mater. Interfaces 4 (2012) 6302-6310.
[32] N. Patel, R. Fernandes, A. Miotello, J. Power Source 188 (2009) 411-420.
[33] Q. Xu, M. Chandra, J. Power Source 163 (2006) 364-370.
[34] Ö. Metin, S. Özkar, J. Hydrogen Energy 36 (2011) 1424-1432.
[35] L. Yang, J. Su, W. Luo, G. Cheng, J. Hydrogen Energy 39 (2014) 3360-3370.
[36] W. Feng, L. Yang, N. Cao, C. Du, H. Dai, W. Luo, G. Cheng, J. Hydrogen Energy 39(2014) 3371-3380.
[37] G.P. Rachiero, U.B. Demirci, P. Miele, J. Hydrogen Energy 36 (2011) 7051-7065.
[38] N. Sahiner, S. Yildiz, Fuel Process. Technol. 126(2014) 324-331.
doi: 10.1016/j.fuproc.2014.05.025
[39] A. Kantürk Figen, B. Cos¸ kuner, J. Hydrogen Energy 38 (2013) 2824-2835.
[40] E.E. Arthur, F. Li, F.W.Y. Momade, H. Kim, Energy 76 (2014) 822-829.
[1] Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure[J]. 材料科学与技术, 2018, 34(7): 1103-1109.
[2] Peiyi Zhu, Shuangyu Liu, Jian Xie, Shichao Zhang, Gaoshao Cao, Xinbing Zhao. Facile Synthesis of NiFe2O4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance[J]. J. Mater. Sci. Technol., 2014, 30(11): 1078-1083.
[1] Feng XIAO. Density of Ni-Cr Alloy in the Mushy State[J]. J Mater Sci Technol, 2003, 19(02): 107 -110 .
[2] Fuan HUA, Yuansheng YANG, Dayong GUO, Wenhui TONG, Zhuangqi HU. Elasto-Plastic FEM Analysis of Residual Stress in Spun Tube[J]. J Mater Sci Technol, 2004, 20(04): 379 -382 .
[3] Peng ZHANG, Yunhui DU, Hanwu LIU, Daben ZENG, Jianzhong CUI, Limin BA. Influence of Solid Fraction on Structure of QTi3.5-15/Graghite Slurry[J]. J Mater Sci Technol, 2004, 20(06): 794 -796 .
[4] Baoqun NING, Yongchang LIU, Qingzhi SHI, Zhiming GAO, Liushuan YANG. Effects of Austenite Stabilization on the Onset of Martensite Transformation in T91 Steel[J]. J Mater Sci Technol, 2008, 24(02): 202 -206 .
[5] Hua CHENG, Aimin WU, Nanlin SHI, Lishi WEN. Effect of Ar on Polycrystalline Si Films Deposited by ECR-PECVD using SiH4[J]. J Mater Sci Technol, 2008, 24(05): 690 -692 .
[6] Nobuo Tanaka (Dept. of Applied Physics, School of Engineering, Nagoya University, Nagoya, 464-01, Japan). Studies of Atomic Structure and Physical Properties of Metal Clusters in MgO by HREM and Nano-probe Methods[J]. J Mater Sci Technol, 1997, 13(4): 265 -270 .
[7] Mustafa Ulutan Osman N. Celik Hakan Gasan Umit Er. Effect of Different Surface Treatment Methods on the Friction and Wear Behavior of AISI 4140 Steel[J]. J Mater Sci Technol, 2010, 26(3): 251 -257 .
[8] Wenqiang Zhang, Yonggang Xu, Liming Yuan, Jun Cai, Deyuan Zhang. Microwave Absorption and Shielding Property of Composites with FeSiAl and Carbonous Materials as Filler[J]. J. Mater. Sci. Technol., 2012, 28(10): 913 -919 .
[9] Wang Yingjun. Preface to the Special Issue: Bioadaption of Biomaterials[J]. J. Mater. Sci. Technol., 2016, 32(9): 799 -800 .
[10] Liu Huan,Xue Feng,Bai Jing,Ma Aibin,Jiang Jinghua. Formation Behavior of 14H Long Period Stacking Ordered Structure in Mg-Y-Zn Cast Alloys with Different α-Mg Fractions[J]. J. Mater. Sci. Technol., 2016, 32(12): 1267 -1273 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.