Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (9): 1481-1486    DOI: 10.1016/j.jmst.2018.05.008
Orginal Article Current Issue | Archive | Adv Search |
Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation
Khalid Hussain Theboab, Xitang Qianac, Qinwei Weiac, Qing Zhangac, Hui-Ming Chengad, Wencai Rena*()
a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
b University of Chinese Academy of Sciences (UCAS), 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
c School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
d Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, 1001 Xueyuan Road, Shenzhen 518055, China
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene oxide (GO) membranes play an important role in various nanofiltration applications including desalination, water purification, gas separation, and pervaporation. However, it is still very challenging to achieve both high separation efficiency and good water permeance at the same time. Here, we synthesized two kinds of GO-based composite membranes i.e. reduced GO (rGO)@MoO2 and rGO@WO3 by in-situ growth of metal nanoparticles on the surface of GO sheets. They show a high separation efficiency of ~100% for various organic dyes such as rhodamine B, methylene blue and evans blue, along with a water permeance over 125 L m-2 h-1 bar-1. The high water permeance and rejection efficiency open up the possibility for the real applications of our GO composite membranes in water purification and wastewater treatment. Furthermore, this composite strategy can be readily extended to the fabrication of other ultrathin molecular sieving membranes for a wide range of molecular separation applications.

Key words:  Graphene oxide      Composite      Membranes      Separation      Permeance     
Received:  10 April 2018      Published:  25 September 2018
Corresponding Authors:  Ren Wencai     E-mail:  wcren@imr.ac.cn

Cite this article: 

Khalid Hussain Thebo, Xitang Qian, Qinwei Wei, Qing Zhang, Hui-Ming Cheng, Wencai Ren. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J. Mater. Sci. Technol., 2018, 34(9): 1481-1486.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2018.05.008     OR     http://www.jmst.org/EN/Y2018/V34/I9/1481

Fig. 1.  Structure characterization of rGO@metal oxide nanoparticles composite membranes. (a, b) Top-view SEM images of rGO@MoO2 (a) and rGO@WO3 (b) composite membrane. (c, d) Cross-sectional SEM images of rGO@MoO2 (c) and rGO@WO3 (d) composite membrane. (e, f) Raman spectra (e) and XRD patterns (f) of GO, rGO@MoO2, and rGO@WO3 membrane.
Fig. 2.  Chemical composition and bonding characterization of rGO@metal oxide nanoparticles composite membranes. (a-c) C 1s XPS spectra of GO (a), rGO@MoO2 (b), and rGO@WO3 membranes (c). (d) FTIR spectra of GO, rGO@MoO2, and rGO@WO3 composite membranes.
Fig. 3.  Permeance and separation performance of rGO@metal oxide composite membranes. (a, b) Permeance and rejection to different organic dyes of rGO@MoO2 (a) and rGO@WO3 (b) composite membranes at a trans-membrane pressure of 1.0 bar. (c, d) UV-vis absorption spectra of the feed, permeate and retentate of RB after filtration by rGO@MoO2 (c) and rGO@WO3 (d) composite membranes. The insets show the photos of the feed and permeate solutions.
Dyes MW (g mol-1) Charge rGO@MoO2 membrane (800 nm) rGO@WO3 membrane (1000 nm)
Permeance (L m-2 h-1 bar-1) Rejection (%) Permeance (L m-2 h-1 bar-1) Rejection (%)
RB 479.0 + 145 100 140 100
MLB 373.0 + 145 100 140 100
FA 585.53 - 150 95 160 98
MB 799.8 - 180 90 180 85
EB 960.0 - 125 100 130 100
Table 1  Water permeance and separation performance of rGO@metal oxide nanoparticles composite membranes to various dye molecules at 25 °C.
[1] L. Wang, M.S.H.Boutilier, P.R. Kidambi, D. Jang, N.G. Hadji-constantinou, R. Karnik, Nat. Nanotechnol., 12(2017), pp. 509-522
doi: 10.1038/nnano.2017.72
[2] J.R. Werber, C.O. Osuji, M. Elimelech, Nat. Rev. Mater. (2016), p. 16018
[3] Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination, 387(2016), pp. 46-60
doi: 10.1016/j.desal.2016.02.036
[4] G. Liu, W. Jin, N. Xu, Chem. Soc. Rev., 44(2015), pp. 5016-5030
doi: 10.1039/C4CS00423J
[5] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, N. Hilal, Desalination, 356(2015), pp. 226-254
doi: 10.1016/j.desal.2014.10.043
[6] A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Nat. Nanotechnol., 12(2017), pp. 1083-1088
doi: 10.1038/nnano.2017.160 pmid: 28846102
[7] A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani, P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Nat. Commun., 7(2016), p. 10891
[8] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Nature, 550(2017), p. 380
[9] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Science, 343(2014), pp. 752-754
doi: 10.1126/science.1245711 pmid: 24531966
[10] Q. Yang, Y. Su, C. Chi, C.T. Cherian, K. Huang, V.G. Kravets, F.C. Wang, J.C. Zhang, A. Pratt, A.N. Grigorenko, F. Guinea, A.K. Geim, R.R. Nair, Nat. Mater., 16(2017), pp. 1198-1202
doi: 10.1038/nmat5025
[11] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Nat. Nanotechnol., 12(2017), pp. 546-550
doi: 10.1038/nnano.2017.21 pmid: 28369049
[12] K.H. Thebo, X. Qian, Q. Zhang, L. Chen, H.M. Cheng, W. Ren, Nat. Commun., 9(2018), p. 486
[13] S. Pei, Q. Wei, K. Huang, H.M. Cheng, W. Ren, Nat. Commun., 9(2018), p. 145
[14] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Science, 335(2012), pp. 442-444
doi: 10.1126/science.1211694 pmid: 22282806
[15] Y. You, X.H. Jin, X.Y. Wen, V. Sahajwalla, V. Chen, H. Bustamante, R.K. Joshi, Carbon, 129(2018), pp. 415-419
doi: 10.1016/j.carbon.2017.12.032
[16] L. Qiu, X. Zhang, W. Yang, Y. Wang, G.P. Simon, D. Li, Chem. Commun., 47(2011), pp. 5810-5812
doi: 10.1039/c1cc10720h
[17] Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater., 23(2013), pp. 3693-3700
doi: 10.1002/adfm.201202601
[18] M. Hu, B. Mi, J. Membr. Sci., 469(2014), pp. 80-87
doi: 10.1016/j.memsci.2014.06.036
[19] M. Hu, B. Mi, Environ. Sci. Technol., 47(2013), pp. 3715-3723
doi: 10.1021/es400571g pmid: 23488812
[20] X. Zhao, Y. Su, Y. Liu, Y. Li, Z. Jiang, ACS Appl. Mater. Interfaces, 8(2016), pp. 8247-8256
doi: 10.1021/acsami.5b12876 pmid: 26978041
[21] Y. Jiang, W. Wang, D. Liu, Y. Nie, W. Li, J. Wu, F. Zhang, P. Biswas, J.D. Fortner, Environ. Sci. Technol., 49(2015), pp. 6846-6854
doi: 10.1021/acs.est.5b00904
[22] Y. Zhang, S. Zhang, T.S. Chung, Environ. Sci. Technol., 49(2015), pp. 10235-10242
doi: 10.1021/acs.est.5b02086
[23] D. Qin, Z. Liu, D.D. Sun, X. Song, H. Bai, Sci. Rep., 5(2015), p. 14530
[24] R. Wang, Z. Li, W. Liu, W. Jiao, L. Hao, F. Yang, Compos. Sci. Technol., 87(2013), pp. 29-35
doi: 10.1016/j.compscitech.2013.08.002
[25] Q. Cheng, M. Wu, M. Li, L. Jiang, Z. Tang, Angew. Chem. Int. Ed., 52(2013), pp. 3750-3755
doi: 10.1002/anie.201210166 pmid: 23401250
[26] S.M. Kang, S. Park, D. Kim, S.Y. Park, R.S. Ruoff, H. Lee, Adv. Funct. Mater., 21(2011), pp. 108-112
doi: 10.1002/adfm.201001692
[27] K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, Adv. Funct. Mater., 20(2010), pp. 3322-3329
doi: 10.1002/adfm.201000723
[28] V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev., 112(2012), pp. 6156-6214
doi: 10.1021/cr3000412
[29] G. Bottari, M.A. Herranz, L. Wibmer, M. Volland, L. Rodrıguez-Peŕez, D.M. Guldi, A. Hirsch, N. Martin, F. D’Souza, T. Torres, Chem. Soc. Rev., 46(2017), pp. 4464-4500
doi: 10.1039/C7CS00229G pmid: 28702571
[30] E. Yang, A.B. Alayande, C. Kim, J. Song, I.S. Kim, Desalination, 426(2018), pp. 21-31
doi: 10.1016/j.desal.2017.10.023
[31] M. Zhang, K. Guan, J. Shen, G. Liu, Y. Fan, W. Jin, J. AIChE, 63(2017), pp. 5054-5063
doi: 10.1002/aic.v63.11
[32] K. Goh, W. Jiang, H. Karahan, S. Zhai, L. Wei, D. Yu, A.G. Fane, R. Wang, Y. Chen, Adv. Funct. Mater., 25(2015), pp. 7348-7359
doi: 10.1002/adfm.v25.47
[33] L. Huang, J. Chen, T. Gao, M. Zhang, Y. Li, L. Dai, L. Qu, G. Shi, Adv. Mater., 28(2016), pp. 8669-8674
[34] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 80(1958)1339-1339
[35] Y. Sun, X. Hu, W. Luo, Y. Huang, ACS Nano, 5(2011), pp. 7100-7107
doi: 10.1021/nn201802c
[36] L. Gan, L. Xu, S. Shang, X. Zhou, L. Meng, Ceram. Int., 42(2016), pp. 15235-15241
doi: 10.1016/j.ceramint.2016.06.160
[37] Z. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, ACS Nano, 4(2010), pp. 3187-3194
doi: 10.1021/nn100740x
[38] Z. Wu, D. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Adv. Funct. Mater., 20(2010), pp. 3595-3602
doi: 10.1002/adfm.v20:20
[39] G. Zhou, D. Wang, L. Yin, N. Li, F. Li, H.M. Cheng, ACS Nano, 6(2012), pp. 3214-3223
doi: 10.1021/nn300098m
[40] J. Deng, Y. You, H. Bustamante, V. Sahajwalla, R.K. Joshi, Chem. Sci., 8(2017), pp. 1701-1704
doi: 10.1039/c6sc03909j pmid: 28451296
[41] K. Cao, Z. Jiang, J. Zhao, C. Zhao, C. Gao, F. Pan, B. Wang, X. Cao, J. Yang, J. Membr. Sci., 469(2014), pp. 272-283
[1] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites[J]. 材料科学与技术, 2019, 35(5): 824-832.
[2] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[3] Yuanyuan Chen, Zhangping Hu, Yifei Xu, Jiangyong Wang, Peter Schützendübe, Yuan Huang, Yongchang Liu, Zumin Wang. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling[J]. 材料科学与技术, 2019, 35(4): 512-519.
[4] Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel[J]. 材料科学与技术, 2019, 35(3): 448-459.
[5] Chao Li, Yuhai Qian, Chunlei Ma, Shumin Wang, Meishuan Li. Suppressing the anomalous rapid oxidation of Ti3AlC2 by incorporating TiB2[J]. 材料科学与技术, 2019, 35(3): 432-439.
[6] M. Todea, A. Vulpoi, C. Popa, P. Berce, S. Simon. Effect of different surface treatments on bioactivity of porous titanium implants[J]. 材料科学与技术, 2019, 35(3): 418-426.
[7] Jiajia Sun, Hejun Li, Liyuan Han, Qiang Song. Enhancing both strength and toughness of carbon/carbon composites by heat-treated interface modification[J]. 材料科学与技术, 2019, 35(3): 383-393.
[8] Peisan Wang, Chunxia Qi, Luyuan Hao, Pengchao Wen, Xin Xu. Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye[J]. 材料科学与技术, 2019, 35(3): 285-291.
[9] César A.Terrazas, Lawrence E.Murr, Diego Bermudez, Edel Arrieta, David A.Roberson, Ryan B.Wicker. Microstructure and mechanical properties of Ti-6Al-4V-5% hydroxyapatite composite fabricated using electron beam powder bed fusion[J]. 材料科学与技术, 2019, 35(2): 309-321.
[10] Haoran Liu, Zhenyi Zhang, Jun Ge, Xiao Lin, Xinye Ni, Huilin Yang, Lei Yang. A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection[J]. 材料科学与技术, 2019, 35(1): 176-180.
[11] Xixi Niu, Haoqiang Zhang, Zhiliang Pei, Nanlin Shi, Chao Sun, Jun Gong. Measurement of interfacial residual stress in SiC fiber reinforced Ni-Cr-Al alloy composites by Raman spectroscopy[J]. 材料科学与技术, 2019, 35(1): 88-93.
[12] Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites[J]. 材料科学与技术, 2019, 35(1): 36-43.
[13] Wen-Wen Li, Bo Chen, La-Mei Cao, Wei Liu, Hua-Ping Xiong, Yao-Yong Cheng. Joining of Cf/SiBCN composite with CuPd-V filler alloy[J]. 材料科学与技术, 2018, 34(9): 1652-1659.
[14] Shulin Lü, Pan Xiao, Du Yuan, Kun Hu, Shusen Wu. Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration[J]. 材料科学与技术, 2018, 34(9): 1609-1617.
[15] Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites[J]. 材料科学与技术, 2018, 34(9): 1580-1591.
[1] Zhenming XU, Jianguo LI, Hengzhi FU. Crystallization growth of single crystal Cu by continuous casting[J]. J Mater Sci Technol, 2000, 16(03): 345 -347 .
[2] Suzan A.Ali. Effect of Sequence of Impregnation on the Structure and Catalytic Properties of Cu-Co-Al-Oxide System[J]. J Mater Sci Technol, 2004, 20(01): 55 -58 .
[3] Renjie ZENG, B.R. Effects of Dispex A40 on rheology and filter pressing behaviours of concentrated alumina suspensions[J]. J Mater Sci Technol, 2001, 17(06): 664 -666 .
[4] Jun ZOU, Lianhan ZHANG, Jun XU, Shengming ZHOU. γ-LiAlO2 Single Crystal Grown by Czochralski Technique and Modified by Vapor Transport Equilibration (VTE) Technique[J]. J Mater Sci Technol, 2006, 22(04): 491 -494 .
[5] Yufeng CHEN and Yuanlong DU (State Key Lab. of Corrosion Science and Protedion, Institute of Corrosion and Protection of Metals, Chinese Academy of Sciences, Shenyang 110015, China)(To whom correspondence should be addressed). Fracture Mechanism of UNS G10190 Steel in Hydrochloric Acid Containing Ferric Ion[J]. J Mater Sci Technol, 1996, 12(3): 223 -226 .
[6] LI Yongzheng ZHANG Qiu'e Changchun Institute of Optics and Fine Mechanics,Changchun,130022,China. New Laser-cladding Technique for Welding of Bridge Wires in Detonators[J]. J Mater Sci Technol, 1992, 8(5): 330 -334 .
[7] HAN Haiou LIN Qin WEI Shoukun University of Science and Technology Beijing,100083,China.. Binary System MnO-Nb_2O_5[J]. J Mater Sci Technol, 1990, 6(2): 98 -102 .
[8] A.A. Bahgat, H.A. Mady, A.S. Abdel Moghny, A.S. Abd-Rabo, Samia E. Negm. Transport Properties of KxV2O5?nH2O Nanocrystalline Films[J]. J Mater Sci Technol, 2011, 27(10): 865 -872 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.