Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (9): 1487-1493    DOI: 10.1016/j.jmst.2018.03.022
Orginal Article Current Issue | Archive | Adv Search |
Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties
Igor Iatsunskyia*(), Margarita Baitimirovab, Emerson Coya, Luis Yatec, Roman Viterb, Arunas Ramanaviciusd, Stefan Jurgaa, Mikhael Bechelanye(), Donats Ertsb*()
a NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan, Poland
b Institute of Chemical Physics, and Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Boulevard, LV 1586 Riga, Latvia
c Surface Analysis and Fabrication Platform, CIC biomaGUNE, Paseo Miramón 182, 20009 Donostia-San Sebastian, Spain;
d Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
e Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France;
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Structural, electronic and mechanical properties of ZnO/Graphene (ZnO/G) nanolaminates fabricated by low temperature atomic layer deposition (ALD) and chemical vapor deposition (CVD) were investigated. We performed scanning and transmission electron microscopy (SEM/TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS) and nanoindentation to characterize the ZnO/G nanolaminates. The main structural and mechanical parameters of ZnO/G nanolaminates were calculated. The obtained results were analyzed and interpreted taking into account mechanical interaction and charge effects occurring at the G-ZnO interface. The influence of graphene sublayers number on the mechanical behavior of the ZnO/G nanolaminates was studied. By reducing the bilayer thickness, the mechanical parameters of the films can be tuned (Young’s modulus 100-200 GPa, hardness 3-9 GPa). The softer response of the multilayers as compared to the single layers of ZnO and graphene was attributed to the structural changes in the ZnO layer and the interfaces. This study shows the mechanical behavior of ZnO/G nanolaminates and their influence on the development of novel electro-optical devices based on these structures.

Key words:  Nanolaminate      Graphene      ZnO      XPS      Nanointendation      Multilayers      Atomic layer deposition      Chemical vapor deposition     
Received:  05 January 2018      Published:  25 September 2018
Corresponding Authors:  Iatsunskyi Igor,Erts Donats     E-mail:  igoyat@amu.edu.pl;mikhael.bechelany@umontpellier.fr;donats.erts@lu.lva

Cite this article: 

Igor Iatsunskyi, Margarita Baitimirova, Emerson Coy, Luis Yate, Roman Viter, Arunas Ramanavicius, Stefan Jurga, Mikhael Bechelany, Donats Erts. Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties. J. Mater. Sci. Technol., 2018, 34(9): 1487-1493.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2018.03.022     OR     http://www.jmst.org/EN/Y2018/V34/I9/1487

Fig. 1.  Schematic diagram of the fabrication of ZnO/Graphene nanolaminates.
Samples ZnO layer thickness nm Number of ZnO layers Number of Gr layers
ZnO100G0 100 1 0
ZnO100G2 100 1 2
ZnO50G3 50 2 3
ZnO25G5 25 4 5
ZnO20G6 20 5 6
ZnO10G11 10 10 11
Table 1  Samples description.
Fig. 2.  GIXRD patterns of ZnO/Graphene nanolaminates.
Fig. 3.  Raman spectra of ZnO/Graphene nanolaminates.
Fig. 4.  SEM/TEM images of cross-section of ZnO/Graphene nanolaminates: (a) ZnO100G2 sample, (inset - high magnification of white square); (b) the interface between Si-Graphene-ZnO (inset - FFT of yellow square); (c) ZnO50G3 sample; (d) ZnO25G5 sample; (e) ZnO20G6 sample; f) ZnO10G11 sample.
Fig. 5.  (a) XPS survey spectra of the ZnO/Graphene nanolaminates; XPS core-level spectra of (b) Zn 2p, and (c) O 1s.
Fig. 6.  (a) Values of elastic modulus E (left axis) and hardness H (right axis) vs the number of graphene layers for ZnO/Graphene nanolaminates and values of 100 nm ZnO layer (marked by red/black squares). The inset shows the value of H/E vs the number of graphene layers. Sketch shows the piling up effect of defects and delamination’s as the number of layers increases, (b) Topographic images resulting of nanowear experiments.
[1] I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, S. Jurga, J. Phys. Chem. C, 119(2015), p. 20591
[2] H. Zhu, X. Xu, X. Tian, J. Tang, H. Liang, L. Chen, Y. Xie, X. Zhang, C. Xiao, R. Li, Q. Gu, P. Hua, S. Ruan, Adv. Mater., 29(2017), p. 1604351
[3] X. Men, H. Chen, K. Chang, X. Fang, C. Wu, W. Qin, S. Yin, Appl. Catal. B Environ., 187(2016), p. 367
[4] M. Dusza, F. Granek, W. Strek, Opt. Mater. (Amst.), 1 (2017)
[5] A. Brataas, Nature, 452(2008), p. 419
[6] W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Nat. Nano, 9(2014), p. 794
[7] K.C. Pradel, Y. Ding, W. Wu, Y. Bando, N. Fukata, Z.L. Wang, ACS Appl. Mater. Interfaces, 8(2016)
[8] R. Viter, M. Savchuk, I. Iatsunskyi, Z. Pietralik, N. Starodub, N. Shpyrka, A. Ramanaviciene, A. Ramanavicius, Biosens. Bioelectron., 99(2018), p. 237
[9] E. Rokhsat, O. Akhavan, Appl. Surf. Sci., 371(2016), p. 592
[10] L. Zhang, L. Du, X. Yu, S. Tan, X. Cai, P. Yang, Y. Gu, W. Mai, ACS Appl. Mater. Interfaces, 6(2014), p. 3623
[11] M. Yu, A. Wang, Y. Wang, C. Li, G. Shi, Nanoscale, 6(2014), p. 11419
[12] B.J. Moon, K.S. Lee, J. Shim, S. Park, S.H. Kim, S. Bae, M. Park, C.L. Lee, W.K. Choi, Y. Yi, J.Y. Hwang, D.I. Son, Nano Energy, 20(2016), p. 221
[13] H. Zhang, Y. Cen, Y. Du, S. Ruan, Sensors (Switzerland), 16 (2016)
[14] F. Liu, Y. Zhang, J. Yu, S. Wang, S. Ge, X. Song, Biosens. Bioelectron., 51(2014), p. 413
[15] M. Baitimirova, R. Viter, J. Andzane, A. van der Lee, D. Voiry, I. Iatsunskyi, E. Coy, L. Mikoliunaite, S. Tumenas, K. Załęski, Z. Balevicius, I. Baleviciute, A. Ramanaviciene, A. Ramanavicius, S. Jurga, D. Erts, M. Bechelany, J. Phys. Chem. C, 120(2016), p. 23716
[16] E. Coy, L. Yate, Z. Kabacińska, M. Jancelewicz, S. Jurga, I. Iatsunskyi, Mater. Des., 111(2016), p. 584
[17] T. Homola, V. Buršíková, T.V. Ivanova, P. Souček, P.S. Maydannik, D.C. Cameron, J.M. Lackner, Surf. Coat. Technol., 284(2015), p. 198
[18] R. Raghavan, M. Bechelany, M. Parlinska, D. Frey, W.M. Mook, A. Beyer, J. Michler, I. Utke, Appl. Phys. Lett., 100(2012), p. 191912
[19] J.A. Whitby, F. Östlund, P. Horvath, M. Gabureac, J.L. Riesterer, I. Utke, M. Hohl, L. Sedláček, J. Jiruše, V. Friedli, M. Bechelany, J. Michler, Adv. Mater. Sci. Eng. (2012), p. 2012
[20] W. Oliver, G. Pharr, J. Mater. Res., 7(1992), p. 1564
[21] W.C. Oliver, G.M. Pharr, J. Mater. Res., 19(2004), p. 3
[22] D. Nečas, P. Klapetek, Open Phys., 10(2012), p. 181
[23] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett., 97(2006)
[24] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep., 473(2009), p. 51
[25] J. Hong, M.K. Park, E.J. Lee, D. Lee, D.S. Hwang, S. Ryu, Sci. Rep., 3(2013), p. 2700
[26] I. Iatsunskyi, M. Kempiński, G. Nowaczyk, M. Jancelewicz, M. Pavlenko, K. Załeski, S. Jurga, Appl. Surf. Sci., 347(2015), p. 777
[27] L.S. Dake, D.R. Baer, J.M. Zachara, Surf. Interface Anal., 14(1989), p. 71
[28] S. Kaciulis, A. Mezzi, P. Calvani, D.M. Trucchi, Surf. Interface Anal., 46(2014), p. 966
[29] I. Iatsunskyi, A. Vasylenko, R. Viter, M. Kempiński, G. Nowaczyk, S. Jurga, M. Bechelany, Appl. Surf. Sci., 411(2017), p. 494
[30] R. Al-Gaashani, S. Radiman, R. a. Daud, N.Tabet, Y. Al-Douri, Ceram. Int., 39(2013), p. 2283
[31] R. Viter, I. Iatsunskyi, V. Fedorenko, S. Tumenas, Z. Balevicius, A. Ramanavicius, S. Balme, M. Kempin, G. Nowaczyk, S. Jurga, M. Bechelany, J. Phys. Chem. C, 120(2016), pp. 5124-5132
doi: 10.1021/acs.jpcc.5b12263
[32] a V. Shchukarev, D.V. Korolkov, Cent. Eur. J. Chem., 2(2004), p. 347
[33] R. Navamathavan, K.-K. Kim, D.-K. Hwang, S.-J. Park, J.-H. Hahn, T.G. Lee, G.-S. Kim, Appl. Surf. Sci., 253(2006), p. 464
[34] S.-R. Jian, I.-J. Teng, P.-F. Yang, Y.-S. Lai, J.-M. Lu, J.-G. Chang, S.-P. Ju, Nanoscale Res. Lett., 3(2008), p. 186
[35] K. Tapily, D. Stegall, D. Gu, H. Baumgart, G. Namkoong, A.A. Elmustafa, ECS Trans., 25(2009), p. 85
[36] Z. Shafiee, M.E. Bahrololoom, B. Hashemi, Mater. Des., 108(2016), p. 19
[37] L. Chen, Y.X. Xu, Mater. Des., 106(2016), p. 1
[38] A. Dück, N. Gamer, W. Gesatzke, M. Griepentrog, W. Österle, M. Sahre, I. Urban, Surf. Coat. Technol., 142-144(2001), p. 579
[39] S.-R. Jian, J. Alloys Compd., 494(2010), p. 214
[40] S.R. Jian, I.J. Teng, P.F. Yang, Y.S. Lai, J.M. Lu, J.G. Chang, S.P. Ju, Nanoscale Res. Lett., 3(2008), p. 186
[41] V. Bhardwaj, R. Chowdhury, R. Jayaganthan, Appl. Surf. Sci., 389(2016), p. 1023
[42] V. Bhardwaj, R. Chowdhury, R. Jayaganthan, J. Mater. Res., 32(2017), p. 1432
[43] J. Guo, H. Wang, F. Meng, X. Liu, F. Huang, Surf. Coat. Technol., 228(2013), p. 68
[44] A.V. Pshyk, L.E. Coy, L. Yate, K. Załęski, G. Nowaczyk, A.D. Pogrebnjak, S. Jurga, Mater. Des., 94(2016), p. 230
[1] S.L. Xie, Z.B. Wang, K. Lu. Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel[J]. 材料科学与技术, 2019, 35(3): 460-464.
[2] M. Jalili, H. Ghanbari, S.Moemen Bellah, R. Malekfar. High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation[J]. 材料科学与技术, 2019, 35(3): 292-299.
[3] Manash Jyoti Deka, Devasish Chowdhury. Surface charge induced tuning of electrical properties of CVD assisted graphene and functionalized graphene sheets[J]. 材料科学与技术, 2019, 35(1): 151-158.
[4] Chaoxuan Shen, Han Wang, Tengxin Zhang, You Zeng. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites[J]. 材料科学与技术, 2019, 35(1): 36-43.
[5] Khalid Hussain Thebo, Xitang Qian, Qinwei Wei, Qing Zhang, Hui-Ming Cheng, Wencai Ren. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation[J]. 材料科学与技术, 2018, 34(9): 1481-1486.
[6] Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure[J]. 材料科学与技术, 2018, 34(7): 1103-1109.
[7] Mina Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, Basavaraj Hungund. Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties[J]. 材料科学与技术, 2018, 34(6): 1035-1043.
[8] Sima Kashi, Rahul K. Gupta, Nhol Kao, S. Ali Hadigheh, Sati N. Bhattacharya. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices[J]. 材料科学与技术, 2018, 34(6): 1026-1034.
[9] Xiangyu Zhong, Xinqiang Wu, En-Hou Han. Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 °C Aerated Supercritical Water[J]. 材料科学与技术, 2018, 34(3): 561-569.
[10] Xiaoqi Meng, Changjiang Zhao, Boxu Xu, Pei Wang, Juncheng Liu. Effects of the annealing temperature on the structure and up-conversion photoluminescence of ZnO film[J]. 材料科学与技术, 2018, 34(12): 2392-2397.
[11] Dunhua Hong, Guangzhong Cao, Junle Qu, Yuanming Deng, Jiaonin Tang. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites[J]. 材料科学与技术, 2018, 34(12): 2359-2367.
[12] Dandan Ke, Jin Wang, Hongming Zhang, Yuan Li, Lu Zhang, Xin Zhao, Shumin Han. Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles[J]. 材料科学与技术, 2018, 34(12): 2350-2358.
[13] Jiajia Qiu, Yudong Shang, Xiuhua Chen, Shaoyuan Li, Wenhui Ma, Xiaohan Wan, Jia Yang, Yun Lei, Zhengjie Chen. Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation[J]. 材料科学与技术, 2018, 34(11): 2197-2204.
[14] Xin Gao, Hongyan Yue, Erjun Guo, Shaolin Zhang, Longhui Yao, Xuanyu Lin, Bao Wang, Enhao Guan. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets[J]. 材料科学与技术, 2018, 34(10): 1925-1931.
[15] Zhongtao Chen, Xinli Guo, Long Zhu, Long Li, Yuanyuan Liu, Li Zhao, Weijie Zhang, Jian Chen, Yao Zhang, Yuhong Zhao. Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method[J]. 材料科学与技术, 2018, 34(10): 1919-1924.
[1] Shouliang BU, Shaoqing WANG, Hengqiang YE. Synchronizing the Parameter Non-matching Chaotic Systems[J]. J Mater Sci Technol, 2002, 18(02): 191 -192 .
[2] Ximiao PAN, Zhanpeng JIN. A Study of the Ni-Cr-Zr System at 900°C[J]. J Mater Sci Technol, 2002, 18(06): 532 -534 .
[3] G.C.Hwang, J.Matsushita. Fabrication and Properties of SiB6-B4C with Phenolic Resin as a Carbon Source[J]. J Mater Sci Technol, 2008, 24(01): 102 -104 .
[4] Senying LIU; Rongze HU; Dongliang ZHAO and Chongyu WANG (Central Iron and Steel Research Institute, Beijing 100081, China)Ping LUO (National Research Center for Certified Material, Beijing 100013, China)Zhongjie PU (Florida International University, Miami. Bonding Characteristics of the Intermetallic Compound Al_3Ti+Cr[J]. J Mater Sci Technol, 1996, 12(3): 180 -184 .
[5] TANG Rongde Deputy-chief engineer. Fushun Steel Plant, Liaoning, China.. Fushun Steel Plant[J]. J Mater Sci Technol, 1989, 5(5): 373 -375 .
[6] S.K. Ghosh. Influence of Cold Deformation on the Aging Behaviour of Al-Cu-Si-Mg Alloy[J]. J Mater Sci Technol, 2011, 27(3): 193 -198 .
[7] Heping Liu, Xuejun Jin. Secondary Austenite Morphologies in Fusion Zone of Welded Joint after Postweld Heat Treatment with a Continuous Wave Laser[J]. J Mater Sci Technol, 2012, 28(3): 249 -254 .
[8] Hyunsik Bang, Ke Ma, Kai Wei, Chang-Yong Kang, Byoung-Suhk Kim, Mayakrishnan Gopiraman, Jung Soon Lee, Ick-Soo Kim. A Simple Method for the Fabrication of Metallic Copper Nanospheres-Decorated Cellulose Nanofiber Composite[J]. J. Mater. Sci. Technol., 2016, 32(7): 605 -610 .
[9] Juan Wang, Bin Li, Shuai Ren, Rui Li, Tao Wang, Guojun Zhang. Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300°C[J]. J. Mater. Sci. Technol., 2018, 34(4): 635 -642 .
[10] Lei Li, Peng Guo, Lin-Lin Liu, Xiaowei Li, Peiling Ke, Aiying Wang. Structural design of Cr/GLC films for high tribological performance in artificial seawater: Cr/GLC ratio and multilayer structure[J]. J. Mater. Sci. Technol., 2018, 34(8): 1273 -1280 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.