Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (10): 1925-1931    DOI: 10.1016/j.jmst.2018.02.010
Orginal Article Current Issue | Archive | Adv Search |
Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets
Xin Gaoa, Hongyan Yuea(), Erjun Guoa, Shaolin Zhangb, Longhui Yaoa, Xuanyu Lina, Bao Wanga, Enhao Guana
aSchool of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
bDepartment of Physics, Dongguk University, Seoul 100715, Korea
Download:  HTML  PDF(4112KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene reinforced copper matrix composites (Gr/Cu) were fabricated by electrostatic self-assembly and powder metallurgy. The morphology and structure of graphene oxide, graphene oxide-Cu powders and Gr/Cu composites were characterized by scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction and Raman spectroscopy, respectively. The effects of graphene contents, applied loads and sliding speeds on the tribological behavior of the composites were investigated. The results indicate that the coefficient of friction of the composites decreases first and then increases with increasing the graphene content. The lowest friction coefficient is achieved in 0.3 wt% Gr/Cu composite, which decreases by 65% compared to that of pure copper. The coefficient of friction of the composite does not have significant change with increasing the applied load, however, it increases with increasing the sliding speed. The tribological mechanisms of the composite under different conditions were also investigated.

Key words:  Graphene nanosheets      Copper matrix composites      Tribological properties      Microstructure     
Received:  20 May 2017      Published:  01 November 2018

Cite this article: 

Xin Gao, Hongyan Yue, Erjun Guo, Shaolin Zhang, Longhui Yao, Xuanyu Lin, Bao Wang, Enhao Guan. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets. J. Mater. Sci. Technol., 2018, 34(10): 1925-1931.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2018.02.010     OR     http://www.jmst.org/EN/Y2018/V34/I10/1925

Fig 1.  Schematic depicting of pin-on-disk fiction test.
Fig. 2.  Characterizations of the GO and GO-Cu powders: (a) SEM image of GO, (b) XRD patterns of pristine graphite and GO, (c) Raman spectroscope of GO, (d) SEM image of pure Cu powders, (e) SEM image of GO-Cu powders, (f) magnified image of Fig. 2(e).
Fig. 3.  Characterizations of the Gr/Cu composite: (a) photos of GO-Cu powders and Gr/Cu composite wear sample, (b) SEM image of 0.3 wt% Gr/Cu composite, (c) XRD patterns of Cu and Gr/Cu composite, (d) TEM image of 0.3 wt% Gr/Cu composite, (e) HRTEM image of 0.3 wt% Gr/Cu composite.
Fig. 4.  Hardness and tribological properties of the Gr/Cu composite with different graphene contents: (a) Vickers hardness, (b) coefficient of friction, (c) mass loss.
Fig. 5.  SEM micrographs of worn surfaces of the Gr/Cu composites with different graphene contents: (a, b) pure copper, (c, d) 0.1 wt% Gr/Cu composite, (e, f) 0.3 wt% Gr/Cu composite, (g, h) 0.5 wt% Gr/Cu composite.
Fig. 6.  SEM micrograph of surface and fracture morphology of the 0.5 wt% Gr/Cu composite: (a) surface morphology, (b) fracture morphology.
Fig. 7.  Tribological properties of the 0.3 wt% Gr/Cu composite under different applied loads: (a) coefficient of friction, (b) mass loss.
Fig. 8.  SEM micrographs of the 0.3 wt% Gr/Cu composite under different applied loads: (a, b) 10 N, (c, d) 15 N, (e, f) 20 N, (g, h) 25 N.
Fig. 9.  Tribological properties of the 0.3 wt% Gr/Cu composite under different sliding speeds: (a) coefficient of friction, (b) mass loss.
Fig. 10.  SEM micrographs of the 0.3 wt% Gr/Cu composite under different sliding speeds: (a, b) 120 r/min, (c, d) 240 r/min, (e, f) 480 r/min.
[1] B. Kong, J. Ru, H. Zhang, T. Fan, J. Mater, Sci. Technol. 34 (2018), .
[2] G.A. Bagheri, J. Alloys Compd. 676(2016) 120-126.
doi: 10.1016/j.jallcom.2016.03.085
[3] N.B. Dhokey, R.K. Paretkar, Wear 265 (2008) 117-133.
doi: 10.1016/j.wear.2007.09.001
[4] S.G. Sapate, A. Uttarwar, R.C. Rathod, R.K. Paretkar, Mater. Des. 30(2009)376-386.
doi: 10.1016/j.matdes.2008.04.055
[5] D. Gu, H. Wang, D. Dai, P. Yuan, W. Meiners, R. Poprawe, Scr. Mater. 96(2015)25-28.
doi: 10.1016/j.scriptamat.2014.10.011
[6] H.Y. Yue, B. Wang, X. Gao, S.L. Zhang, X.Y. Lin, L.H. Yao, E.J. Guo, J. AlloysCompd. 692(2017) 395-402.
[7] J. Mirazimi, P. Abachi, K. Purazrang, Acta Metall. Sin. (Engl. Lett.) 29(2016)1169-1176.
doi: 10.1007/s40195-016-0512-0
[8] P. Zhang, J. Jie, Y. Gao, H. Li, Z. Cao, T. Wang, T. Li, Mater. Sci. Eng. A 642 (2015)398-405.
doi: 10.1007/s10853-014-8762-6
[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
doi: 10.1126/science.1102896
[10] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau,Nano Lett. 8(2008) 902-907.
doi: 10.1021/nl0731872
[11] R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, Compos. Sci. Technol. 72(2012) 1459-1476.
doi: 10.1016/j.compscitech.2012.05.005
[12] S.C. Tjong, Mater. Sci. Eng. R 74 (2013) 281-350.
doi: 10.1016/j.mser.2013.08.001
[13] D.B. Xiong, M. Cao, Q. Guo, Z. Tan, G. Fan, Z. Li, D. Zhang, ACS Nano 9 (2015)6934-6943.
doi: 10.1021/acsnano.5b01067
[14] J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, S. Jeon, Adv. Mater. 25(2013) 6724-6729.
doi: 10.1002/adma.v25.46
[15] W.J. Kim, T.J. Lee, S.H. Han, Carbon 69 (2014) 55-65.
doi: 10.1016/j.carbon.2013.11.058
[16] R. Jiang, X. Zhou, Q. Fang, Z. Liu, Mater. Sci. Eng. A 654 (2016) 124-130.
doi: 10.1016/j.msea.2015.12.039
[17] X. Liu, D. Wei, L. Zhuang, C. Cai, Y. Zhao, Mater. Sci. Eng. A 642 (2015) 1-6.
doi: 10.1016/j.msea.2015.06.032
[18] Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung,S. Jeon, S.M. Han, Nat. Commun. 4(2013) 2114.
doi: 10.1038/ncomms3114
[19] M.X. Li, J. Xie, Y.D. Li, H.H. Xu, Phys. Status Solidi A 212 (2015) 2154-2161.
doi: 10.1002/pssa.v212.10
[20] Y. Chen, X. Zhang, E. Liu, C. He, C. Shi, J. Li, P. Nash, N. Zhao, Sci. Rep. 6(2016)19363.
doi: 10.1038/srep19363
[21] H.Y. Yue, L.H. Yao, X. Gao, S.L. Zhang, E.J. Guo, H. Zhang, X.Y. Lin, B. Wang, J.Alloys Compd. 691(2017) 755-762.
doi: 10.1016/j.jallcom.2016.08.303
[22] Z. Li, Q. Guo, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Zhang, D. Zhang, Nano Lett. 15(2015) 8077-8083.
doi: 10.1021/acs.nanolett.5b03492
[23] F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Carbon 96 (2016) 836-842.
doi: 10.1016/j.carbon.2015.10.023
[24] J.F. Li, L. Zhang, J.K. Xiao, K.C. Zhou, Trans. Nonferrous Metals Soc. China 25 (2015) 3354-3362.
doi: 10.1016/S1003-6326(15)63970-X
[25] L.J. Cote, F. Kim, J. Huang, J. Am. Chem, Soc. 131(2009) 1043-1049.
doi: 10.1021/ja806262m
[26] X. Gao, H.Y. Yue, E.J. Guo, H. Zhang, X.Y. Lin, L.H. Yao, B. Wang, PowderTechnol. 301(2016) 601-607.
[27] H. Xia, X. Zhang, Z. Shi, C. Zhao, Y. Li, J. Wang, G. Qiao, Mater. Sci. Eng. A 639 (2015) 29-36.
doi: 10.1016/j.msea.2015.04.091
[28] S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Edit.49(2010) 4795-4799.
doi: 10.1002/anie.201001634
[29] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3(2008)101.
doi: 10.1038/nnano.2007.451
[30] X. Gao, H.Y. Yue, E.J. Guo, H. Zhang, X.Y. Lin, L.H. Yao, B. Wang, Mater. Des. 94(2016) 54-60.
doi: 10.1016/j.matdes.2016.01.034
[31] A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Compos. Sci. Technol. 70(2010) 2237-2241.
doi: 10.1016/j.compscitech.2010.05.004
[1] Yurong Liu, Yongpeng Xia, Kang An, Chaowei Huanga, Weiwei Cui, Sheng Wei, Rong Ji, Fen Xu, Huanzhi Zhang, Lixian Sun. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior[J]. 材料科学与技术, 2019, 35(5): 939-945.
[2] L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J]. 材料科学与技术, 2019, 35(5): 917-925.
[3] Woo Jin Lee, Jisoo Kim, Hyung Wook Park. Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation[J]. 材料科学与技术, 2019, 35(5): 891-901.
[4] Jingbo Hu, Changqing Fang, Shisheng Zhou, Youliang Cheng, Hanzhi Han. Microstructure characterization and thermal properties of the waste-styrene-butadiene-rubber (WSBR)-modified petroleum-based mesophase asphalt[J]. 材料科学与技术, 2019, 35(5): 852-857.
[5] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[6] Y.F. Sun, H. Fujii, Y. Sato, Y. Morisada. Friction stir spot welding of SPCC low carbon steel plates at extremely low welding temperature[J]. 材料科学与技术, 2019, 35(5): 733-741.
[7] SnSeYeongseon Kim, Younghwan Jin, Giwan Yoon, In Chung, Hana Yoon, Chung-Yul Yoo, Sang Hyun Park. Electrical characteristics and detailed interfacial structures of Ag/Ni metallization on polycrystalline thermoelectric SnSe[J]. 材料科学与技术, 2019, 35(5): 711-718.
[8] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[9] Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang. Analysis of local crystallographic orientation in an annealed Ti60 billet[J]. 材料科学与技术, 2019, 35(4): 591-595.
[10] Junxiu Chen, Lili Tan, Xiaoming Yu, Ke Yang. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. 材料科学与技术, 2019, 35(4): 503-511.
[11] Jie Huang, Kai-Ming Zhang, Yun-Fei Jia, Cheng-Cheng Zhang, Xian-Cheng Zhang, Xian-Feng Ma, Shan-Tung Tu. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment[J]. 材料科学与技术, 2019, 35(3): 409-417.
[12] Yafei Wang, Rui Chen, Xu Cheng, Yanyan Zhu, Jikui Zhang, Huaming Wang. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. 材料科学与技术, 2019, 35(2): 403-408.
[13] Tingting Guan, Suiyuan Chen, Xueting Chen, Jing Liang, Changsheng Liu, Mei Wang. Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition[J]. 材料科学与技术, 2019, 35(2): 395-402.
[14] Chunping Huang, Xin Lin, Fencheng Liu, Haiou Yang, Weidong Huang. High strength and ductility of 34CrNiMo6 steel produced by laser solid forming[J]. 材料科学与技术, 2019, 35(2): 377-387.
[15] Xin Lin, Yuanyuan Zhang, Gaolin Yang, Xuehao Gao, Qiao Hu, Jun Yu, Lei Wei, Weidong Huang. Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming[J]. 材料科学与技术, 2019, 35(2): 328-335.
[1] Sangwon Lee, Bonggyu Park, Yongho Park, Ikmin Park. Effect of Sn on the Microstructure and Mechanical Properties of Mg-5Al-2Si Alloys[J]. J Mater Sci Technol, 2008, 24(03): 296 -298 .
[2] Zhimin ZHOU, Lifang XIA, Mingren SUN. Influence of Bias on the Properties of Carbon Nitride Films Prepared by Vacuum Cathodic Arc Method[J]. J Mater Sci Technol, 2004, 20(06): 735 -738 .
[3] Mingfen WEN, Bo YU, Qiuping WANG, Chongli SONG, Jing CHEN. Study on the Properties of Nanometer CeO2 Doped with Zr4+, La3+, Pr3+[J]. J Mater Sci Technol, 2004, 20(03): 357 -360 .
[4] M.G.Abd El Wahed, S.Abd El Wanees, M.El Gamel, S.Abd El Haleem. Physical Studies of Some Hydrazinobenzoic Acid Complexes[J]. J Mater Sci Technol, 2005, 21(01): 140 -144 .
[5] Weimin MAO, Dong LI, Yongning YU. Influence of Surface Oxide Films on Elastic Behaviors of Straight Screw Dislocations Parallel to the Surface of Pure Aluminum[J]. J Mater Sci Technol, 2007, 23(03): 392 -394 .
[6] J.J.Park, G.H.Kim, S.M.Hong, S.H.Lee, M.K.Lee, C.K.Rhee. Properties of Dispersion Casting of Y2O3 Particles in Hypo, Hyper and Eutectic Binary Al-Cu Alloys[J]. J Mater Sci Technol, 2008, 24(01): 57 -59 .
[7] Jun Wei,Xiaoyan Song,Qingchao Han,Lingmei Li. Thermodynamic Properties of Nanograin Boundary and Thermal Stability of Nanograin Structure[J]. J Mater Sci Technol, 2009, 25(04): 475 -478 .
[8] Xianjie Liao,Hongwei Xie,Yuchun Zhaiy,Yi Zhang. Preparation of Al3Sc Intermetallic Compound by FFC Method[J]. J Mater Sci Technol, 2009, 25(05): 717 -720 .
[9] Yong LIU; Baiyun HUANG; Jianmin RUAN and Yuehui HE(Powder Metallurgy Research Institute, Central-South University of Technology, Changsha 410083, China). Behaviour of Composite Ca/P Bioceramics in Simulated Body Fluid[J]. J Mater Sci Technol, 1998, 14(6): 533 -537 .
[10] LIU Wei;WANG Zhongguang;XIA Yuebo Institute of Matal Research, Academia Sinica, Shenyang, China.. Intergranular Fatigue Cracking Behaviour in Aluminium[J]. J Mater Sci Technol, 1989, 5(2): 123 -129 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.