Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (6): 1026-1034    DOI: 10.1016/j.jmst.2017.10.013
Orginal Article Current Issue | Archive | Adv Search |
Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices
Sima Kashiab*(), Rahul K. Guptab, Nhol Kaob, S. Ali Hadighehc, Sati N. Bhattacharyab
aInstitute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
bRheology and Materials Processing Group, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
cSchool of Civil Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, New South Wales 2006, Australia
Download:  HTML  PDF 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene nanoplatelets (GNPs) were used as multifunctional nanofiller to enhance thermal and mechanical properties as well as electrical conductivity of two different biodegradable thermoplastics: poly lactide (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Morphological investigations showed different levels of GNP dispersion in the two matrices, and consequently physical properties of the two systems exhibited dissimilar behaviours with GNP incorporation. Crystallinity of PLA, determined from differential scanning calorimetry, was observed to increase markedly with addition of GNPs in contrast to the decrease in crystallinity of PBAT. Isothermal and non-isothermal thermogravimetric analyses also revealed a more significant delay in thermal decomposition of PLA upon addition of GNPs compared to that of PBAT. Furthermore, results showed that increasing GNP content of PLA and PBAT nanocomposites influenced their Young’s modulus and electrical conductivity in different ways. Modulus of PBAT increased continuously with increasing GNP loading while that of PLA reached a maximum at 9 wt% GNPs and then decreased. Moreover, despite the higher conductivity of pure PBAT compared to pure PLA, conductivity of PLA/GNP nanocomposites overtook that of PBAT/GNP nanocomposites above a certain GNP concentration. This demonstrated the determining effect of nanoplatelets dispersion state on the matrices properties.

Key words:  Graphene      Nanocomposite      Poly lactide      Poly butylene adipate-co-terephthalate      Thermal stability      Electrical conductivity      Properties     
Received:  02 August 2017      Published:  05 June 2018
Corresponding Authors:  Kashi Sima     E-mail:  sima.kashi@deakin.edu.au

Cite this article: 

Sima Kashi, Rahul K. Gupta, Nhol Kao, S. Ali Hadigheh, Sati N. Bhattacharya. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. J. Mater. Sci. Technol., 2018, 34(6): 1026-1034.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2017.10.013     OR     http://www.jmst.org/EN/Y2018/V34/I6/1026

Sample Cooling cycle Second heating cycle
Tc (°C) ΔHc (J/g) Xc (%) Tg (°C) Tm (°C) ΔHm(J/g) Xc (%)
PL0 99 16.3 17.4 59 169 33.9 29.6
PL3 108 30.6 33.7 61 170 32.8 36.0
PL6 107 30.1 34.2 61 170 33.4 37.9
PL9 110 30.6 35.9 60 171 32.9 38.6
PL12 112 31.3 37.9 59 171 32.4 39.3
PL15 116 31.0 38.9 60 171 33.4 41.9
PB0 86 8.2 7.2 -34 123 12.2 10.7
PB3 98 6.5 5.9 -34 128 8.7 7.9
PB6 100 5.3 4.9 -35 128 8.2 7.7
PB9 102 5.6 5.4 -35 129 6.6 6.4
PB12 104 5.2 5.2 -34 128 5.9 5.9
PB15 105 4.7 4.9 -34 127 5.0 5.1
Table 1  Thermal properties of PLA/GNP and PBAT/GNP nanocomposites obtained from DSC measurements with cooling and heating rates of 2 °C/min.
Fig 1.  SEM images of (a) PB3, (b) PB6, (c) PB9, (d) PL3, (e) PL6, and (f) PL9 nanocomposites.
Fig. 2.  X-ray diffraction pattern of GNPs.
Fig. 3.  X-ray diffraction patterns of (a) PLA/GNP and (b) PBAT/GNP nanocomposites.
Fig. 4.  Absolute and normalised crystallization temperatures of (a) PLA/GNP and (b) PBAT/GNP nanocomposites. Absolute and normalised degrees of crystallinity of (c) PLA/GNP and (d) PBAT/GNP nanocomposites, obtained from cooling cycles.
Fig. 5.  Comparative MDSC thermograms of (a) PLA/GNP and (b) PBAT/GNP nanocomposites during the second heating cycles.
Fig. 6.  TGA curves of (a) PLA/GNP and (b) PBAT/GNP nanocomposites in nitrogen at heating rate of 10 °C/min.
PLA/GNP Nanocomposites PBAT/GNP Nanocomposites
Sample T5% (°C) T10% (°C) T50% (°C) Sample T5% (°C) T10% (°C) T50% (°C)
PL0 325.9 338.8 355.7 PB0 369.2 378.6 400.3
PL3 333.9 339.9 357.0 PB3 368.1 377.1 399.9
PL6 334.9 339.8 355.0 PB6 369.6 378.3 400.4
PL9 337.1 342.5 357.6 PB9 371.8 380.5 403.6
PL12 337.4 343.6 359.2 PB12 373.8 383.2 405.1
PL15 339.6 345.3 362.2 PB15 374.3 383.7 407.8
Table 2  TGA: Temperatures at which 5, 10 and 50% of initial weight of nanocomposites are degraded.
PLA/GNP Nanocomposites PBAT/GNP Nanocomposites
Sample T5% (°C) T10% (°C) T50% (°C) Sample T5% (°C) T10% (°C) T50% (°C)
PL0 325.9 338.8 355.7 PB0 369.2 378.6 400.3
PL3 333.7 339.8 356.8 PB3 367.7 376.7 399.3
PL6 334.4 339.4 354.1 PB6 368.9 377.8 399.4
PL9 336.4 341.8 356.4 PB9 370.7 378.9 401.8
PL12 336.3 342.5 357.6 PB12 372.0 381.5 402.8
PL15 338.2 344.0 359.7 PB15 371.9 381.5 404.1
Table 3  TGA: Temperatures at which 5, 10 and 50% weight reduction occurs in the initial polymer content of the nanocomposites.
Fig. 7.  (a) Isothermal TGA analysis at 265 °C for 5 h in air; (b) Temperature scans with a 5-h isothermal step at 265 °C in air and heating rate of 20 °C/min.
Fig. 8.  Absolute and normalised Young’s moduli of (a) PLA/GNP and (b) PBAT/GNP nanocomposites.
Fig. 9.  Electrical conductivity of PLA/GNP and PBAT/GNP nanocomposites versus GNP loading.
[31] E. Narimissa, R.K. Gupta, N. Kao, H.J. Choi, M. Jollands, S.N. Bhattacharya,Polym. Eng. Sci. 54 (1) (2014) 175-188.
doi: 10.1002/pen.23550
[1] B. Li, W.-H. Zhong, J. Mater. Sci. 46 (17) (2011) 5595-5614.
doi: 10.1007/s10853-011-5572-y
[2] V. Mittal, Macromol. Mater. Eng. 299 (8) (2014) 906-931.
doi: 10.1002/mame.201300394
[32] S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Compos. Part B-Eng.135(2018) 25-34.
doi: 10.1016/j.compositesb.2017.10.002
[3] V. Mittal, A.U. Chaudhry, Macromol. Mater. Eng. 300 (5) (2015) 510-521.
doi: 10.1002/mame.201400392
[33] K. Fukushima, A. Rasyida, M.-C. Yang, Appl.Clay Sci. 80-81(2013) 291-298.
doi: 10.1016/j.clay.2013.04.015
[4] Q. Li, X. Guo, Y. Zhang, W. Zhang, C. Ge, L. Zhao, X. Wang, H. Zhang, J. Chen, Z. Wang, L. Sun, J. Mater. Sci. Technol. 33 (8) (2017) 793-799.
doi: 10.1016/j.jmst.2017.03.018
[34] C.-S. Wu, Carbon 47 (13) (2009) 3091-3098.
doi: 10.1016/j.carbon.2009.07.023
[5] M. Hernández, M.d.M. Bernal, R. Verdejo, T.A. Ezquerra, M.A. López-Manchado, Compos. Sci. Technol. 73(2012) 40-46.
doi: 10.1016/j.compscitech.2012.08.012
[35] V. Mittal, A.U. Chaudhry, G.E. Luckachan, Mater. Chem. Phys. 147 (1-2) (2014)319-332.
doi: 10.1016/j.matchemphys.2014.05.007
[6] L. Chen, D. Rende, L.S. Schadler, R. Ozisik, J. Mater. Chem. A 1 (12) (2013)3837-3850.
doi: 10.1039/c2ta00086e
[36] S. Feng, D. Wu, H. Liu, C. Chen, J. Liu, Z. Yao, J. Xu, M. Zhang, Thermochim. Acta 587(2014) 72-80.
doi: 10.1016/j.tca.2014.04.020
[7] Z. Yenier, Y. Seki, I. Sen, K. Sever, Ö Mermer, M. Sarikanat, Compos.Part B:Eng. 98(2016) 281-287.
doi: 10.1016/j.compositesb.2016.04.072
[37] S. Kashi, R.K. Gupta, N. Kao, S.N. Bhattacharya, J. Appl, Polym. Sci. 133 (27)(2016).
[8] F.-L. Guan, C.-X. Gui, H.-B. Zhang, Z.-G. Jiang, Y. Jiang, Z.-Z. Yu, Compos. Part B:Eng. 98(2016) 134-140.
doi: 10.1016/j.compositesb.2016.04.062
[38] S. Kashi, R.K. Gupta, N. Kao, S.N. Bhattacharya, Polymer 101 (2016) 347-357.
doi: 10.1016/j.polymer.2016.08.097
[39] B. Chieng, N. Ibrahim, W. Yunus, M. Hussein, Polymers 6 (1) (2013) 93-104.
doi: 10.4028/www.scientific.net/AMR.1024.136
[40] M. Mishra, A.P. Singh, S.K. Dhawan, J. Alloys Compd. 557(2013) 244-251.
doi: 10.1016/j.jallcom.2013.01.004
[41] M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Mater. Des. 52(2013) 128-133.
doi: 10.1016/j.matdes.2013.05.038
[42] Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Guo, Macromol. Chem. Phys. 212 (18)(2011) 1951-1959.
doi: 10.1002/macp.201100263
[9] C.C. Roach, Y.C. Lu, J. Mater. Sci. Technol. 33 (8) (2017) 827-833.
doi: 10.1016/j.jmst.2017.03.007
[10] S. Liu, L. Gu, H. Zhao, J. Chen, H. Yu, J. Mater. Sci. Technol. 32 (5) (2016)425-431.
doi: 10.1016/j.jmst.2015.12.017
[11] H. Wang, G. Xie, Z. Ying, Y. Tong, Y. Zeng, J. Mater. Sci. Technol. 31 (4) (2015)340-344.
doi: 10.1016/j.jmst.2014.09.009
[43] M. Li, Y.G. Jeong, Macromol. Mater. Eng. 296 (2) (2011) 159-167.
doi: 10.1002/mame.201000295
[44] F. Chivrac, Z. Kadlecová, E. Pollet, L. Avérous, J. Polym. Environ. 14 (4) (2006)393-401.
doi: 10.1007/s10924-006-0033-4
[12] H. Fukushima, L. Drzal, IN, 2002.
[45] D. Battegazzore, S. Bocchini, A. Francge, Express Polym Lett. 5 (10) (2011)849-858.
doi: 10.3144/expresspolymlett.2011.84
[46] N. Najafi, M.C. Heuzey, P.J. Carreau, Compos. Sci. Technol. 72 (5) (2012)608-615.
doi: 10.1016/j.compscitech.2012.01.005
[13] S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Mater. Des. 95(2016)119-126.
doi: 10.1016/j.matdes.2016.01.086
[47] K. Fukushima, M.H. Wu, S. Bocchini, A. Rasyida, M.C. Yang, Mater. Sci. Eng.C-Biomimetic 32 (6) (2012) 1331-1351.
doi: 10.1016/j.msec.2012.04.005 pmid: 24364930
[48] S. Mohanty, S.K. Nayak, J. Polym. Environ. 20 (1) (2012) 195-207.
doi: 10.1007/s10924-011-0408-z
[14] S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, Mater. Des. 109(2016)68-78.
doi: 10.1016/j.matdes.2016.07.062
[49] E. Narimissa, R.K. Gupta, H.J. Choi, N. Kao, M. Jollands, Polym. Compos. 33 (9)(2012) 1505-1515.
doi: 10.1002/pc.22280
[15] B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang,J. Yuan, Adv. Mater. 26 (21) (2014) 3484-3489.
doi: 10.1002/adma.201400108 pmid: 24648151
[50] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, Macromolecules 41 (12) (2008)4296-4304.
doi: 10.1021/ma800343g
[51] P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Macromolecules 40 (19) (2007)6898-6905.
doi: 10.1021/ma071258d
[16] M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, J. Mater. Chem. C 3 (26) (2015)6589-6599.
doi: 10.1039/c5tc01354b
[52] Y. Di, S. Iannace, E.D. Maio, L. Nicolais, J. Polym. Sci. Polym. Phys. 43 (6) (2005)689-698.
[17] S.W. Ko, R.K. Gupta, S.N. Bhattacharya, H.J. Choi, Macromol. Mater. Eng. 295(4) (2010) 320-328.
doi: 10.1002/mame.200900390
[53] G. Ozkoc, S. Kemaloglu, J. Appl. Polym. Sci. 114 (4) (2009) 2481-2487.
doi: 10.1002/app.30772
[54] K. Fukushima, D. Tabuani, G. Camino, Mater. Sci. Eng. C 29 (4) (2009)1433-1441.
doi: 10.1016/j.msec.2008.11.005
[18] I.-H. Kim, Y.G. Jeong, J. Polym. Sci. Part B: Polym. Phys. 48 (8) (2010) 850-858.
doi: 10.1002/polb.21956
[55] E. Lizundia, A. Oleaga, A. Salazar, J.R. Sarasua, Polymer 53 (12) (2012)2412-2421.
doi: 10.1016/j.polymer.2012.03.046
[56] M. El Achaby, F.-E. Arrakhiz, S. Vaudreuil, A. el Kacem Qaiss, M. Bousmina, O. Fassi-Fehri, Polym. Compos. 33 (5) (2012) 733-744.
doi: 10.1002/pc.22198
[19] L. As’habi, Express Polym. Lett. 7 (1) (2012) 21-39.
[57] M. Murariu, A.L. Dechief, L. Bonnaud, Y. Paint, A. Gallos, G. Fontaine, S. Bourbigot, P. Dubois, Polym. Degrad. Stab. 95 (5) (2010) 889-900.
doi: 10.1016/j.polymdegradstab.2009.12.019
[20] S. Lin, W. Guo, C. Chen, J. Ma, B. Wang, Mater. Des. 36(2012) 604-608.
doi: 10.1016/j.matdes.2011.11.036
[58] L. Hua, Q. Chen, J. Yin, C. Zhang, X. Wang, J. Yin, X. Feng, J. Yang, Macromol.Mater. Eng. 302 (3) (2017) 1600328.
doi: 10.1002/mame.201600328
[59] K. Fukushima, M. Murariu, G. Camino, P. Dubois, Polym. Degrad. Stab. 95 (6)(2010) 1063-1076.
doi: 10.1016/j.polymdegradstab.2010.02.029
[60] D.S. McLachlan, G. Sauti, J. Nanomater. 2007 (2007) 1-9.
[21] R. Al-Itry, K. Lamnawar, A. Maazouz, Polym. Degrad. Stab. 97 (10) (2012)1898-1914.
doi: 10.1016/j.polymdegradstab.2012.06.028
[61] W.-Q. Cao, M.-M. Lu, B. Wen, Y.-L. Chen, H.-B. Li, J. Yuan, M.-S. Cao, Chin. Phys.Lett. 28 (10) (2011) 107701.
doi: 10.1088/0256-307X/28/10/107701
[62] M.-M. Lu, J. Yuan, B. Wen, J. Liu, W.-Q. Cao, M.-S. Cao, Chin. Phys. B 22 (3)(2013) 037701.
doi: 10.1088/1674-1056/22/3/037701
[63] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (7100) (2006) 282-286.
doi: 10.1038/nature04969
[22] S.Y. Hong, S.W. Ko, H.J. Choi, J.H. Lee, J. Macromol. Sci. B 51 (1) (2012) 125-133.
doi: 10.1080/00222348.2011.583199
[64] A. Abbasi Moud, A. Javadi, H. Nazockdast, A. Fathi, V. Altstaedt, J. Polym. Sci.Polym. Phys. 53 (5) (2015) 368-378.
doi: 10.1002/polb.23638
[23] M. Shahlari, S. Lee, Polym. Eng. Sci. 52 (7) (2012) 1420-1428.
doi: 10.1002/pen.23082
[65] W. Yang, R. Yi, X. Yang, M. Xu, S. Hui, X. Cao, Trans. Electr. Electron. Mater. 13(3) (2012) 116-120.
doi: 10.4313/TEEM.2012.13.3.116
[24] J.-T. Yeh, C.-H. Tsou, C.-Y. Huang, K.-N. Chen, C.-S. Wu, W.-L. Chai, J. Appl.Polym. Sci. 116 (2) (2010) 680-687.
[25] B. Chieng, N. Ibrahim, W. Yunus, M. Hussein, Y. Then, Y. Loo, Polymers 6 (8)(2014) 2232-2246.
doi: 10.3390/polym6082232
[26] I. Spiridon, R.N. Darie, H. Kangas, Compos. Part B-Eng. 92(2016) 19-27.
doi: 10.1016/j.compositesb.2016.02.032
[27] Y. Du, T. Wu, N. Yan, M.T. Kortschot, R. Farnood, Compos. Part B-Eng. 56(2014) 717-723.
doi: 10.1016/j.compositesb.2013.09.012
[28] C.-F. Kuan, H.-C. Kuan, C.-C.M. Ma, C.-H. Chen, J. Phys, Chem. Solids 69 (5-6)(2008) 1395-1398.
doi: 10.1016/j.jpcs.2007.10.060
[29] Y.Z. Wan, Y.L. Wang, Q.Y. Li, X.H. Dong, J. Appl. Polym. Sci. 80 (3) (2001)367-376.
doi: 10.1002/(ISSN)1097-4628
[30] A.M. Pinto, S. Moreira, I.C. Goncalves, F.M. Gama, A.M. Mendes, F.D. Magalhaes, Biointerfaces 104 (2013) 229-238.
doi: 10.1016/j.colsurfb.2012.12.006 pmid: 23333912
[1] Shuming Wang, Xin Lin, Qing Ye, Jiangshan Li, Xiaofang Zhang, Ruiping Wang, Yanru Wang. Preparation and laser performances of Nd3+:GSGG ceramic powder raw materials[J]. 材料科学与技术, 2019, 35(5): 926-929.
[2] Yaoli Zhang, Jinguo Li, Xinguang Wang, Yiping Lu, Yizhou Zhou, Xiaofeng Sun. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1[J]. 材料科学与技术, 2019, 35(5): 902-906.
[3] Jingbo Hu, Changqing Fang, Shisheng Zhou, Youliang Cheng, Hanzhi Han. Microstructure characterization and thermal properties of the waste-styrene-butadiene-rubber (WSBR)-modified petroleum-based mesophase asphalt[J]. 材料科学与技术, 2019, 35(5): 852-857.
[4] Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials[J]. 材料科学与技术, 2019, 35(5): 833-851.
[5] Wenyuan Li, Zhiyong Chen, Jianrong Liu, Shaoxiang Zhu, Guoxin Sui, Qingjiang Wang. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate[J]. 材料科学与技术, 2019, 35(5): 790-798.
[6] Shuang Liang, Gang He, Die Wang, Fen Qiao. Atomic-layer-deposited (ALD) Al2O3 passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks[J]. 材料科学与技术, 2019, 35(5): 769-776.
[7] Lei Zhang, Weijun Ren, Xiaohua Luo, Zhidong Zhang. Magnetic and magnetotransport properties of single-crystalline R2PdGe6 (R = Pr, Gd and Tb)[J]. 材料科学与技术, 2019, 35(5): 764-768.
[8] J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang. Three principles for preparing Al wire with high strength and high electrical conductivity[J]. 材料科学与技术, 2019, 35(5): 742-751.
[9] Minjie Xu, Chao Hu, Haiyan Xiang, Haozi Lu, Travis Shihao Hu, Bonian Hu, Song Liu, Gang Yu. Controllable phase transformation and improved thermal stability of nickel on tungsten substrate by electrodeposition[J]. 材料科学与技术, 2019, 35(5): 727-732.
[10] Lu Han, Honghua Fang, Chunmiao Du, Jianxia Sun, Youyong Li, Wanli Ma. Synthesis of ultra-narrow PbTe nanorods with extremely strong quantum confinement[J]. 材料科学与技术, 2019, 35(5): 703-710.
[11] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[12] Gang Qin, Ruirun Chen, Huiting Zheng, Hongze Fang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition[J]. 材料科学与技术, 2019, 35(4): 578-583.
[13] Junxiu Chen, Lili Tan, Xiaoming Yu, Ke Yang. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. 材料科学与技术, 2019, 35(4): 503-511.
[14] Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel[J]. 材料科学与技术, 2019, 35(3): 448-459.
[15] M. Todea, A. Vulpoi, C. Popa, P. Berce, S. Simon. Effect of different surface treatments on bioactivity of porous titanium implants[J]. 材料科学与技术, 2019, 35(3): 418-426.
[1] Qinghua ZENG, Zhiwu PEI, Shubing WANG, Qing SU, Shaozhe LU. Valence Change and Luminescence of Divalent Samarium in Strontium Borates[J]. J Mater Sci Technol, 1999, 15(05): 449 -452 .
[2] J.Iqbal, F.Hasan, F.Ahmad. Characterization of Phases in an as-cast Copper-Manganese-Aluminum Alloy[J]. J Mater Sci Technol, 2006, 22(06): 779 -784 .
[3] TIAN Xing ZHANG Yansheng Dalian Railway Institute,Dalian,116022,China. Low Ductility at Elevated Temperatures of the Cryogenic and Non-magnetic Steel Fe-23Mn-4Al-SCr-0.3C[J]. J Mater Sci Technol, 1992, 8(5): 369 -375 .
[4] G.M. Owolabi, H.A. Whitworth. Modeling and Simulation of Microstructurally Small Crack Formation and Growth in Notched Nickel-base Superalloy Component[J]. J. Mater. Sci. Technol., 2014, 30(3): 203 -212 .
[5] Han X.B.,Qian Y.,Liu W.,Chen D.M.,Yang K.. Effect of Preparation Technique on Microstructure and Hydrogen Storage Properties of LaNi3.8Al1.0Mn0.2 Alloys[J]. J. Mater. Sci. Technol., 2016, 32(12): 1332 -1338 .
[6] Xuehui Hao, Junhua Dong, Xin Mu, Jie Wei, Changgang Wang, Wei Ke. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank[J]. J. Mater. Sci. Technol., 2019, 35(5): 799 -811 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.